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Abstract

This is the Linux Assembly HOWTO, version 0.7 This document describes how to program in assembly language
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Chapter 1. Introduction
Note

You can skip this chapter if you are familiar with HOWTOs, or just hate to read all this assem-
bly-unrelated crap.

Legal Blurb
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License [http://www.gnu.org/copyleft/fdl.html] Version 1.1; with no Invariant Sections,
with no Front-Cover Texts, and no Back-Cover texts. A copy of the license is included in the GNU Free
Documentation License appendix.

The most recent official version of this document is available from the Linux Assembly [http://
asm.sourceforge.net/howto.html] and LDP [http://tldp.org/docs.html] sites. If you are reading a few-
months-old copy, consider checking the above URLs for a new version.

Foreword
This document aims answering questions of those who program or want to program 32-bit x86 assembly
using free software, particularly under the Linux operating system. At many places Universal Resource
Locators (URL) are given for some software or documentation repository. This document also points to
other documents about non-free, non-x86, or non-32-bit assemblers, although this is not its primary goal.
Also note that there are FAQs and docs about programming on your favorite platform (whatever it is),
which you should consult for platform-specific issues, not related directly to assembly programming.

Because the main interest of assembly programming is to build the guts of operating systems, interpreters,
compilers, and games, where C compiler fails to provide the needed expressiveness (performance is more
and more seldom as issue), we are focusing on development of such kind of software.

If you don't know what  free software [http://www.gnu.org/philosophy/] is, please do read carefully the
GNU  General Public License [http://www.gnu.org/copyleft/gpl.html] (GPL or copyleft), which is used
in a lot of free software, and is the model for most of their licenses. It generally comes in a file named
COPYING (or COPYING.LIB). Literature from the Free Software Foundation [http://www.fsf.org] (FSF)
might help you too. Particularly, the interesting feature of free software is that it comes with source code
which you can consult and correct, or sometimes even borrow from. Read your particular license carefully
and do comply to it.

Contributions
This is an interactively evolving document: you are especially invited to ask questions, to answer questions,
to correct given answers, to give pointers to new software, to point the current maintainer to bugs or
deficiencies in the pages. In one word, contribute!

To contribute, please contact the maintainer.

Note

At the time of writing, it is Leo Noordergraaf taking over from Konstantin Boldyshev (since
version 0.6) and Francois-Rene Rideau (since version 0.5).

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://asm.sourceforge.net/howto.html
http://asm.sourceforge.net/howto.html
http://asm.sourceforge.net/howto.html
http://tldp.org/docs.html
http://tldp.org/docs.html
http://www.gnu.org/philosophy/
http://www.gnu.org/philosophy/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org
http://www.fsf.org
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Translations
Korean translation of this HOWTO is avalilable at  http://kldp.org/HOWTO/html/Assembly-HOWTO/
[http://kldp.org/HOWTO/html/Assembly-HOWTO/]. Turkish translation of this HOWTO is available at
http://belgeler.org/howto/assembly-howto.html [http://belgeler.org/howto/assembly-howto.html].

http://kldp.org/HOWTO/html/Assembly-HOWTO/
http://kldp.org/HOWTO/html/Assembly-HOWTO/
http://belgeler.org/howto/assembly-howto.html
http://belgeler.org/howto/assembly-howto.html
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Chapter 2. Do you need assembly?
Well, I wouldn't want to interfere with what you're doing, but here is some advice from the hard-earned
experience.

Pros and Cons
The advantages of Assembly

Assembly can express very low-level things:

• you can access machine-dependent registers and I/O

• you can control the exact code behavior in critical sections that might otherwise involve deadlock be-
tween multiple software threads or hardware devices

• you can break the conventions of your usual compiler, which might allow some optimizations (like
temporarily breaking rules about memory allocation, threading, calling conventions, etc)

• you can build interfaces between code fragments using incompatible conventions (e.g. produced by
different compilers, or separated by a low-level interface)

• you can get access to unusual programming modes of your processor (e.g. 16 bit mode to interface
startup, firmware, or legacy code on Intel PCs)

• you can produce reasonably fast code for tight loops to cope with a bad non-optimizing compiler (but
then, there are free optimizing compilers available!)

• you can produce hand-optimized code perfectly tuned for your particular hardware setup, though not
to someone else's

• you can write some code for your new language's optimizing compiler (that is something what very few
ones will ever do, and even they not often)

• i.e. you can be in complete control of your code

The disadvantages of Assembly
Assembly is a very low-level language (the lowest above hand-coding the binary instruction patterns).
This means

• it is long and tedious to write initially

• it is quite bug-prone

• your bugs can be very difficult to chase

• your code can be fairly difficult to understand and modify, i.e. to maintain

• the result is non-portable to other architectures, existing or upcoming

• your code will be optimized only for a certain implementation of a same architecture: for instance,
among Intel-compatible platforms each CPU design and its variations (relative latency, through-output,
and capacity, of processing units, caches, RAM, bus, disks, presence of FPU, MMX, 3DNOW, SIMD
extensions, etc) implies potentially completely different optimization techniques. CPU designs already
include: Intel 386, 486, Pentium, PPro, PII, PIII, PIV; Cyrix 5x86, 6x86, M2; AMD K5, K6 (K6-2,
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K6-III), K7 (Athlon, Duron). New designs keep popping up, so don't expect either this listing and your
code to be up-to-date.

• you spend more time on a few details and can't focus on small and large algorithmic design, that are
known to bring the largest part of the speed up (e.g. you might spend some time building very fast list/
array manipulation primitives in assembly; only a hash table would have sped up your program much
more; or, in another context, a binary tree; or some high-level structure distributed over a cluster of
CPUs)

• a small change in algorithmic design might completely invalidate all your existing assembly code. So
that either you're ready (and able) to rewrite it all, or you're tied to a particular algorithmic design

• On code that ain't too far from what's in standard benchmarks, commercial optimizing compilers outper-
form hand-coded assembly (well, that's less true on the x86 architecture than on RISC architectures, and
perhaps less true for widely available/free compilers; anyway, for typical C code, GCC is fairly good);

• And in any case, as moderator John Levine says on comp.compilers [news:comp.compilers],

"compilers make it a lot easier to use complex data structures,
and compilers don't get bored halfway through
and generate reliably pretty good code."

They will also correctly propagate code transformations throughout the whole (huge) program when
optimizing code between procedures and module boundaries.

Assessment
All in all, you might find that though using assembly is sometimes needed, and might even be useful in
a few cases where it is not, you'll want to:

• minimize use of assembly code

• encapsulate this code in well-defined interfaces

• have your assembly code automatically generated from patterns expressed in a higher-level language
than assembly (e.g. GCC inline assembly macros)

• have automatic tools translate these programs into assembly code

• have this code be optimized if possible

• All of the above, i.e. write (an extension to) an optimizing compiler back-end.

Even when assembly is needed (e.g. OS development), you'll find that not so much of it is required, and
that the above principles retain.

See the Linux kernel sources concerning this: as little assembly as needed, resulting in a fast, reliable,
portable, maintainable OS. Even a successful game like DOOM was almost massively written in C, with
a tiny part only being written in assembly for speed up.

How to NOT use Assembly
General procedure to achieve efficient code

As Charles Fiterman says on comp.compilers [news:comp.compilers] about human vs computer-generated
assembly code:

news:comp.compilers
news:comp.compilers
news:comp.compilers
news:comp.compilers
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The human should always win and here is why.

First the human writes the whole thing in a high level language.
Second he profiles it to find the hot spots where it spends its time.
Third he has the compiler produce assembly for those small sections of code.
Fourth he hand tunes them looking for tiny improvements over the machine
generated code.

The human wins because he can use the machine.

Languages with optimizing compilers
Languages like ObjectiveCAML, SML, CommonLISP, Scheme, ADA, Pascal, C, C++, among others,
all have free optimizing compilers that will optimize the bulk of your programs, and often do better than
hand-coded assembly even for tight loops, while allowing you to focus on higher-level details, and without
forbidding you to grab a few percent of extra performance in the above-mentioned way, once you've
reached a stable design. Of course, there are also commercial optimizing compilers for most of these
languages, too!

Some languages have compilers that produce C code, which can be further optimized by a C compiler:
LISP, Scheme, Perl, and many other. Speed is fairly good.

General procedure to speed your code up
As for speeding code up, you should do it only for parts of a program that a profiling tool has consistently
identified as being a performance bottleneck.

Hence, if you identify some code portion as being too slow, you should

• first try to use a better algorithm;

• then try to compile it rather than interpret it;

• then try to enable and tweak optimization from your compiler;

• then give the compiler hints about how to optimize (typing information in LISP; register usage with
GCC; lots of options in most compilers, etc).

• then possibly fallback to assembly programming

Finally, before you end up writing assembly, you should inspect generated code, to check that the problem
really is with bad code generation, as this might really not be the case: compiler-generated code might be
better than what you'd have written, particularly on modern multi-pipelined architectures! Slow parts of
a program might be intrinsically so. The biggest problems on modern architectures with fast processors
are due to delays from memory access, cache-misses, TLB-misses, and page-faults; register optimization
becomes useless, and you'll more profitably re-think data structures and threading to achieve better locality
in memory access. Perhaps a completely different approach to the problem might help, then.

Inspecting compiler-generated code
There are many reasons to inspect compiler-generated assembly code. Here is what you'll do with such
code:
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• check whether generated code can be obviously enhanced with hand-coded assembly (or by tweaking
compiler switches)

• when that's the case, start from generated code and modify it instead of starting from scratch

• more generally, use generated code as stubs to modify, which at least gets right the way your assembly
routines interface to the external world

• track down bugs in your compiler (hopefully the rarer)

The standard way to have assembly code be generated is to invoke your compiler with the -S flag. This
works with most Unix compilers, including the GNU C Compiler (GCC), but YMMV. As for GCC, it
will produce more understandable assembly code with the -fverbose-asm command-line option. Of
course, if you want to get good assembly code, don't forget your usual optimization options and hints!

Linux and assembly
As you probably noticed, in general case you don't need to use assembly language in Linux programming.
Unlike DOS, you do not have to write Linux drivers in assembly (well, actually you can do it if you really
want). And with modern optimizing compilers, if you care of speed optimization for different CPU's, it's
much simpler to write in C. However, if you're reading this, you might have some reason to use assembly
instead of C/C++.

You may need to use assembly, or you may want to use assembly. In short, main practical (need) reasons
of diving into the assembly realm are small code and libc independence. Impractical (want), and the most
often reason is being just an old crazy hacker, who has twenty years old habit of doing everything in
assembly language.

However, if you're porting Linux to some embedded hardware you can be quite short at the size of whole
system: you need to fit kernel, libc and all that stuff of (file|find|text|sh|etc.) utils into several hundreds
of kilobytes, and every kilobyte costs much. So, one of the possible ways is to rewrite some (or all) parts
of system in assembly, and this will really save you a lot of space. For instance, a simple httpd written
in assembly can take less than 600 bytes; you can fit a server consisting of kernel, httpd and ftpd in 400
KB or less... Think about it.
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Chapter 3. Assemblers
GCC Inline Assembly

The well-known GNU C/C++ Compiler (GCC), an optimizing 32-bit compiler at the heart of the GNU
project, supports the x86 architecture quite well, and includes the ability to insert assembly code in C
programs, in such a way that register allocation can be either specified or left to GCC. GCC works on most
available platforms, notably Linux, *BSD, VSTa, OS/2, *DOS, Win*, etc.

Where to find GCC
GCC home page is http://gcc.gnu.org.

 DOS port of GCC is called DJGPP [http://www.delorie.com/djgpp/].

There are two Win32 GCC ports: cygwin [http://www.cygwin.com] and mingw [http://www.mingw.org]

There is also an OS/2 port of GCC called EMX; it works under DOS too, and includes lots of unix-
emulation library routines. Look around the following site:  ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx
+gcc/ [ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/].

Where to find docs for GCC Inline Asm
The documentation of GCC includes documentation files in TeXinfo format. You can compile them with
TeX and print then result, or convert them to .info, and browse them with emacs, or convert them to
.html, or nearly whatever you like; convert (with the right tools) to whatever you like, or just read as is.
The .info files are generally found on any good installation for GCC.

The right section to look for is C Extensions::Extended Asm::

Section Invoking GCC::Submodel Options::i386 Options:: might help too. Particularly,
it gives the i386 specific constraint names for registers: abcdSDB correspond to %eax, %ebx, %ecx,
%edx, %esi, %edi and %ebp respectively (no letter for %esp).

The DJGPP Games resource (not only for game hackers) had page specifically about assembly, but it's
down. Its data have nonetheless been recovered on the DJGPP site, that contains a mine of other useful
information:  http://www.delorie.com/djgpp/doc/brennan/ [http://www.delorie.com/djgpp/doc/brennan/].

GCC depends on GAS for assembling and follows its syntax (see below); do mind that inline asm needs
percent characters to be quoted, they will be passed to GAS. See the section about GAS below.

Find lots of useful examples in the linux/include/asm-i386/ subdirectory of the sources for the
Linux kernel.

Invoking GCC to build proper inline assembly code
Because assembly routines from the kernel headers (and most likely your own headers, if you try making
your assembly programming as clean as it is in the linux kernel) are embedded in extern inline
functions, GCC must be invoked with the -O flag (or -O2, -O3, etc), for these routines to be available. If
not, your code may compile, but not link properly, since it will be looking for non-inlined extern func-
tions in the libraries against which your program is being linked! Another way is to link against libraries
that include fallback versions of the routines.

http://gcc.gnu.org
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/
http://www.cygwin.com
http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/
ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/
ftp://ftp.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/
http://www.delorie.com/djgpp/doc/brennan/
http://www.delorie.com/djgpp/doc/brennan/
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Inline assembly can be disabled with -fno-asm, which will have the compiler die when using extended
inline asm syntax, or else generate calls to an external function named asm() that the linker can't resolve.
To counter such flag, -fasm restores treatment of the asm keyword.

More generally, good compile flags for GCC on the x86 platform are

gcc -O2 -fomit-frame-pointer -W -Wall

-O2 is the good optimization level in most cases. Optimizing besides it takes more time, and yields code
that is much larger, but only a bit faster; such over-optimization might be useful for tight loops only (if any),
which you may be doing in assembly anyway. In cases when you need really strong compiler optimization
for a few files, do consider using up to -O6.

-fomit-frame-pointer allows generated code to skip the stupid frame pointer maintenance, which
makes code smaller and faster, and frees a register for further optimizations. It precludes the easy use of
debugging tools (gdb), but when you use these, you just don't care about size and speed anymore anyway.

-W -Wall enables all useful warnings and helps you to catch obvious stupid errors.

You can add some CPU-specific -m486 or such flag so that GCC will produce code that is more adapted to
your precise CPU. Note that modern GCC has -mpentium and such flags (and PGCC [http://goof.com/
pcg/] has even more), whereas GCC 2.7.x and older versions do not. A good choice of CPU-specific flags
should be in the Linux kernel. Check the TeXinfo documentation of your current GCC installation for
more.

-m386 will help optimize for size, hence also for speed on computers whose memory is tight and/or
loaded, since big programs cause swap, which more than counters any "optimization" intended by the
larger code. In such settings, it might be useful to stop using C, and use instead a language that favors
code factorization, such as a functional language and/or FORTH, and use a bytecode- or wordcode- based
implementation.

Note that you can vary code generation flags from file to file, so performance-critical files will use maxi-
mum optimization, whereas other files will be optimized for size.

To optimize even more, option -mregparm=2 and/or corresponding function attribute might help, but
might pose lots of problems when linking to foreign code, including libc. There are ways to correctly
declare foreign functions so the right call sequences be generated, or you might want to recompile the
foreign libraries to use the same register-based calling convention...

Note that you can add make these flags the default by editing file /usr/lib/gcc-lib/i486-lin-
ux/2.7.2.3/specs or wherever that is on your system (better not add -W -Wall there, though). The
exact location of the GCC specs files on system can be found by gcc -v.

Macro support
GCC allows (and requires) you to specify register constraints in your inline assembly code, so the optimizer
always know about it; thus, inline assembly code is really made of patterns, not forcibly exact code.

Thus, you can put your assembly into CPP macros, and inline C functions, so anyone can use it in as any
C function/macro. Inline functions resemble macros very much, but are sometimes cleaner to use. Beware
that in all those cases, code will be duplicated, so only local labels (of 1: style) should be defined in
that asm code. However, a macro would allow the name for a non local defined label to be passed as a
parameter (or else, you should use additional meta-programming methods). Also, note that propagating
inline asm code will spread potential bugs in them; so watch out doubly for register constraints in such
inline asm code.

http://goof.com/pcg/
http://goof.com/pcg/
http://goof.com/pcg/


Assemblers

9

Lastly, the C language itself may be considered as a good abstraction to assembly programming, which
relieves you from most of the trouble of assembling.

GAS
GAS is the GNU Assembler, that GCC relies upon.

Where to find it
Find it at the same place where you've found GCC, in the binutils package. The latest version of binutils
is available from  http://sources.redhat.com/binutils/ [http://sources.redhat.com/binutils/].

What is this AT&T syntax
Because GAS was invented to support a 32-bit unix compiler, it uses standard AT&T syntax, which re-
sembles a lot the syntax for standard m68k assemblers, and is standard in the UNIX world. This syntax is
neither worse, nor better than the Intel syntax. It's just different. When you get used to it, you find it much
more regular than the Intel syntax, though a bit boring.

Here are the major caveats about GAS syntax:

• Register names are prefixed with %, so that registers are %eax, %dl and so on, instead of just eax, dl,
etc. This makes it possible to include external C symbols directly in assembly source, without any risk
of confusion, or any need for ugly underscore prefixes.

• The order of operands is source(s) first, and destination last, as opposed to the Intel convention of
destination first and sources last. Hence, what in Intel syntax is mov eax,edx (move contents of
register edx into register eax) will be in GAS syntax mov %edx,%eax.

• The operand size is specified as a suffix to the instruction name. The suffix is b for (8-bit) byte, w for
(16-bit) word, and l for (32-bit) long. For instance, the correct syntax for the above instruction would
have been movl %edx,%eax. However, gas does not require strict AT&T syntax, so the suffix is
optional when size can be guessed from register operands, and else defaults to 32-bit (with a warning).

• Immediate operands are marked with a $ prefix, as in addl $5,%eax (add immediate long value
5 to register %eax).

• Missing operand prefix indicates that it is memory-contents; hence movl $foo,%eax puts the address
of variable foo into register %eax, but movl foo,%eax puts the contents of variable foo into
register %eax.

• Indexing or indirection is done by enclosing the index register or indirection memory cell address in
parentheses, as in testb $0x80,17(%ebp) (test the high bit of the byte value at offset 17 from
the cell pointed to by %ebp).

 Note: There are few programs which may help you to convert source code between AT&T and Intel
assembler syntaxes; some of the are capable of performing conversion in both directions.

GAS has comprehensive documentation in TeXinfo format, which comes at least with the source distrib-
ution. Browse extracted .info pages with Emacs or whatever. There used to be a file named gas.doc or
as.doc around the GAS source package, but it was merged into the TeXinfo docs. Of course, in case of
doubt, the ultimate documentation is the sources themselves! A section that will particularly interest you
is Machine Dependencies::i386-Dependent::

http://sources.redhat.com/binutils/
http://sources.redhat.com/binutils/
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Again, the sources for Linux (the OS kernel) come in as excellent examples; see under linux/arch/
i386/ the following files: kernel/*.S, boot/compressed/*.S, math-emu/*.S.

If you are writing kind of a language, a thread package, etc., you might as well see how other languages
( OCaml [http://para.inria.fr/],  Gforth [http://www.jwdt.com/~paysan/gforth.html], etc.), or thread pack-
ages (QuickThreads, MIT pthreads, LinuxThreads, etc), or whatever else do it.

Finally, just compiling a C program to assembly might show you the syntax for the kind of instructions
you want. See section Do you need assembly? above.

Intel syntax
Good news are that starting from binutils 2.10 release, GAS supports Intel syntax too. It can be triggered
with .intel_syntax directive. Unfortunately this mode is not documented (yet?) in the official binu-
tils manual, so if you want to use it, try to examine  http://www.lxhp.in-berlin.de/lhpas86.html [http://
www.lxhp.in-berlin.de/lhpas86.html], which is an extract from AMD 64bit port of binutils 2.11.

16-bit mode
Binutils (2.9.1.0.25+) now fully support 16-bit mode (registers and addressing) on i386 PCs. Use
.code16 and .code32 to switch between assembly modes.

Also, a neat trick used by several people (including the oskit authors) is to force GCC to produce code
for 16-bit real mode, using an inline assembly statement asm(".code16\n"). GCC will still emit only
32-bit addressing modes, but GAS will insert proper 32-bit prefixes for them.

Macro support
GAS has some macro capability included, as detailed in the texinfo docs. Moreover, while GCC recognizes
.s files as raw assembly to send to GAS, it also recognizes .S files as files to pipe through CPP before
feeding them to GAS. Again and again, see Linux sources for examples.

GAS also has GASP (GAS Preprocessor), which adds all the usual macroassembly tricks to GAS. GASP
comes together with GAS in the GNU binutils archive. It works as a filter, like CPP and M4. I have no
idea on details, but it comes with its own texinfo documentation, which you would like to browse (info
gasp), print, grok. GAS with GASP looks like a regular macro-assembler to me.

NASM
The Netwide Assembler project provides cool i386 assembler, written in C, that should be modular enough
to eventually support all known syntaxes and object formats.

Where to find NASM
http://www.nasm.us,  http://sourceforge.net/projects/nasm/ [http://sourceforge.net/projects/nasm/]

Binary release on your usual metalab mirror in devel/lang/asm/ directory. Should also be available
as .rpm or .deb in your usual Linux distribution.

What it does
The syntax is Intel-style. Comprehensive macroprocessing support is integrated.

http://para.inria.fr/
http://para.inria.fr/
http://www.jwdt.com/~paysan/gforth.html
http://www.jwdt.com/~paysan/gforth.html
http://www.lxhp.in-berlin.de/lhpas86.html
http://www.lxhp.in-berlin.de/lhpas86.html
http://www.lxhp.in-berlin.de/lhpas86.html
http://www.nasm.us
http://sourceforge.net/projects/nasm/
http://sourceforge.net/projects/nasm/
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Supported object file formats are bin, aout, coff, elf, as86, obj (DOS), win32, rdf (their own
format).

NASM can be used as a backend for the free LCC compiler (support files included).

Unless you're using BCC as a 16-bit compiler (which is out of scope of this 32-bit HOWTO), you should
definitely use NASM instead of say AS86 or MASM, because it runs on all platforms.

Note

NASM comes with a disassembler, NDISASM.

Its hand-written parser makes it much faster than GAS, though of course, it doesn't support three bazillion
different architectures. If you like Intel-style syntax, as opposed to GAS syntax, then it should be the
assembler of choice...

Note: There are few programs which may help you to convert source code between AT&T and Intel
assembler syntaxes; some of the are capable of performing conversion in both directions.

Other Assemblers
There are other assemblers with various interesting and outstanding features which may be of your interest
as well.

Note

They can be in various stages of development, and can be non-classic/high-level/whatever else.

AS86
AS86 is a 80x86 assembler (16-bit and 32-bit) with integrated macro support. It has mostly Intel-syntax,
though it differs slightly as for addressing modes. Some time ago it was used in a several projects, including
the Linux kernel, but eventually most of those projects have moved to GAS or NASM. AFAIK, only ELKS
continues to use it.

AS86 can be found at  http://www.debath.co.uk/dev86/ [http://www.debath.co.uk/dev86/], in the bin86
package with linker (ld86), or as separate archive. Documentation is available as the man page and as.doc
from the source package. When in doubt, the source code itself is often a good doc: though it is not very
well commented, the programming style is straightforward. AS86 is part of a number of BSD and Linux
distributions.

Note

AS86 is primarily a 16 bit assembler.

Using AS86 with BCC

Here's the GNU Makefile entry for using BCC to transform .s asm into both a.out .o object
and .l listing:

%.o %.l:    %.s
    bcc -3 -G -c -A-d -A-l -A$*.l -o $*.o $<

http://www.debath.co.uk/dev86/
http://www.debath.co.uk/dev86/
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Remove the %.l, -A-l, and -A$*.l, if you don't want any listing. If you want something else
than a.out, you can examine BCC docs about the other supported formats, and/or use the objcopy
utility from the GNU binutils package.

YASM
YASM is a complete rewrite of the NASM assembler under the "new" BSD License. It is designed from
the ground up to allow for multiple syntaxes to be supported (eg, NASM, TASM, GAS, etc.) in addition
to multiple output object formats including COFF, Win32 and Mach-O. Another primary module of the
overall design is an optimizer module.

FASM
FASM (flat assembler) is a fast, efficient 80x86 assembler that runs in 'flat real mode'. Unlike many other
80x86 assemblers, FASM only requires the source code to include the information it really needs. It is
written in itself and is very small and fast. It runs on DOS/Windows/Linux and can produce flat binary,
DOS EXE, Win32 PE, COFF and Linux ELF output. See http://flatassembler.net.

OSIMPA (SHASM)
osimpa is an assembler for Intel 80386 processors and subsequent, written entirely in the GNU Bash com-
mand interpreter shell. The predecessor of osimpa was shasm. osimpa is much cleaned up, can create useful
Linux ELF executables, and has various HLL-like extensions and programmer convenience commands.

It is (of course) slower than other assemblers. It has its own syntax (and uses its own names for x86 op-
codes) Fairly good documentation is included. Check it out:  ftp://linux01.gwdg.de/pub/cLIeNUX/inter-
im/ [ftp://linux01.gwdg.de/pub/cLIeNUX/interim/] (Access is password controlled). You will probably
not use it on regular basis, but at least it deserves your interest as an interesting idea.

AASM
Aasm is an advanced assembler designed to support several target architectures. It has been designed to
be easily extended and, should be considered as a good alternative to monolithic assembler development
for each new target CPUs and binary file formats.

Aasm should make assembly programming easier for developer, by providing a set of advanced features
including symbol scopes, an expressions engine, big integer support, macro capability, numerous and
accurate warning messages. Its dynamic modular architecture enables Aasm to extend its set of features
with plug-ins by taking advantages of dynamic libraries.

The input module supports Intel syntax (like nasm, tasm, masm, etc.). The x86 assembler module sup-
ports all opcodes up to P6 including MMX, SSE and 3DNow! extensions. F-CPU and SPARC assembler
modules are under development. Several output modules are available for ELF, COFF, IntelHex, and raw
binary formats.

http://savannah.nongnu.org/projects/aasm/ [http://savannah.nongnu.org/projects/aasm/]

TDASM
The Table Driven Assembler (TDASM) is a free portable cross assembler for any kind of assembly lan-
guage. It should be possible to use it as a compiler to any target microprocessor using a table that defines
the compilation process.

http://flatassembler.net
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/
http://savannah.nongnu.org/projects/aasm/
http://savannah.nongnu.org/projects/aasm/
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It is available from  http://www.penguin.cz/~niki/tdasm/ [http://www.penguin.cz/~niki/tdasm/] but is
seems it is no longer actively maintained.

HLA
HLA [http://www.plantation-productions.com/Webster/HighLevelAsm/index.html] is a High Level As-
sembly language. It uses a high level language like syntax (similar to Pascal, C/C++, and other HLLs) for
variable declarations, procedure declarations, and procedure calls. It uses a modified assembly language
syntax for the standard machine instructions. It also provides several high level language style control
structures (if, while, repeat..until, etc.) that help you write much more readable code.

HLA is free and comes with source, Linux and Win32 versions available. On Win32 you need MASM
and a 32-bit version of MS-link on Win32, on Linux you need GAS, because HLA produces specified
assembler code and uses that assembler for final assembling and linking.

TALC
TALC [http://www.cs.cornell.edu/talc/] is another free MASM/Win32 based compiler (however it sup-
ports ELF output, does it?).

TAL stands for Typed Assembly Language. It extends traditional untyped assembly languages with typing
annotations, memory management primitives, and a sound set of typing rules, to guarantee the memory
safety, control flow safety,and type safety of TAL programs. Moreover, the typing constructs are expres-
sive enough to encode most source language programming features including records and structures, ar-
rays, higher-order and polymorphic functions, exceptions, abstract data types, subtyping, and modules.
Just as importantly, TAL is flexible enough to admit many low-level compiler optimizations. Consequent-
ly, TAL is an ideal target platform for type-directed compilers that want to produce verifiably safe code
for use in secure mobile code applications or extensible operating system kernels.

Free Pascal
Free Pascal [http://www.freepascal.org] has an internal 32-bit assembler (based on NASM tables) and a
switchable output that allows:

• Binary (ELF and coff when crosscompiled .o) output

• NASM

• MASM

• TASM

• AS (aout,coff, elf32)

The MASM and TASM output are not as good debugged as the other two, but can be handy sometimes.

The assembler's look and feel are based on Turbo Pascal's internal BASM, and the IDE supports similar
highlighting, and FPC can fully integrate with gcc (on C level, not C++).

Using a dummy RTL, one can even generate pure assembler programs.

Win32Forth assembler
Win32Forth is a free 32-bit ANS FORTH system that successfully runs under Win32s, Win95, Win/NT. It
includes a free 32-bit assembler (either prefix or postfix syntax) integrated into the reflective FORTH lan-

http://www.penguin.cz/~niki/tdasm/
http://www.penguin.cz/~niki/tdasm/
http://www.plantation-productions.com/Webster/HighLevelAsm/index.html
http://www.plantation-productions.com/Webster/HighLevelAsm/index.html
http://www.cs.cornell.edu/talc/
http://www.cs.cornell.edu/talc/
http://www.freepascal.org
http://www.freepascal.org
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guage. Macro processing is done with the full power of the reflective language FORTH; however, the only
supported input and output contexts is Win32For itself (no dumping of .obj file, but you could add that
feature yourself, of course). Find it at  ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/
[ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/].

Terse
Terse [http://www.terse.com] is a programming tool that provides THE most compact assembler syntax
for the x86 family! However, it is evil proprietary software. It is said that there was a project for a free
clone somewhere, that was abandoned after worthless pretenses that the syntax would be owned by the
original author. Thus, if you're looking for a nifty programming project related to assembly hacking, I
invite you to develop a terse-syntax frontend to NASM, if you like that syntax.

As an interesting historic remark, on comp.compilers [news:comp.compilers],

1999/07/11 19:36:51, the moderator wrote:

"There's no reason that assemblers have to have awful syntax.  About
30 years ago I used Niklaus Wirth's PL360, which was basically a S/360
assembler with Algol syntax and a little syntactic sugar like while
loops that turned into the obvious branches.  It really was an
assembler, e.g., you had to write out your expressions with explicit
assignments of values to registers, but it was nice.  Wirth used it to
write Algol W, a small fast Algol subset, which was a predecessor to
Pascal.  As is so often the case, Algol W was a significant
improvement over many of its successors. -John"

Non-free and/or Non-32bit x86 assemblers
You may find more about them, together with the basics of x86 assembly programming, in the Raymond
Moon's x86 assembly FAQ.

Note that all DOS-based assemblers should work inside the Linux DOS Emulator, as well as other sim-
ilar emulators, so that if you already own one, you can still use it inside a real OS. Recent DOS-based
assemblers also support COFF and/or other object file formats that are supported by the GNU BFD library,
so that you can use them together with your free 32-bit tools, perhaps using GNU objcopy (part of the
binutils) as a conversion filter.

ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/
ftp://ftp.forth.org/pub/Forth/Compilers/native/windows/Win32For/
http://www.terse.com
http://www.terse.com
news:comp.compilers
news:comp.compilers
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Chapter 4. Metaprogramming
Assembly programming is a bore, but for critical parts of programs.

You should use the appropriate tool for the right task, so don't choose assembly when it does not fit; C,
OCaml, perl, Scheme, might be a better choice in the most cases.

However, there are cases when these tools do not give fine enough control on the machine, and assembly is
useful or needed. In these cases you'll appreciate a system of macroprocessing and metaprogramming that
allows recurring patterns to be factored each into one indefinitely reusable definition, which allows safer
programming, automatic propagation of pattern modification, etc. Plain assembler often is not enough,
even when one is doing only small routines to link with C.

External filters
Whatever is the macro support from your assembler, or whatever language you use (even C!), if the lan-
guage is not expressive enough to you, you can have files passed through an external filter with a Makefile
rule like that:

%.s:    %.S other_dependencies
        $(FILTER) $(FILTER_OPTIONS) < $< > $@

CPP

CPP is truly not very expressive, but it's enough for easy things, it's standard, and called transparently
by GCC.

As an example of its limitations, you can't declare objects so that destructors are automatically called at
the end of the declaring block; you don't have diversions or scoping, etc.

CPP comes with any C compiler. However, considering how mediocre it is, stay away from it if by chance
you can make it without C.

M4

M4 gives you the full power of macroprocessing, with a Turing equivalent language, recursion, regular
expressions, etc. You can do with it everything that CPP cannot.

See  macro4th (this4th) [ftp://ftp.forth.org/pub/Forth/Compilers/native/unix/this4th.tar.gz] as an example
of advanced macroprogramming using m4.

However, its disfunctional quoting and unquoting semantics force you to use explicit continuation-passing
tail-recursive macro style if you want to do advanced macro programming (which is remindful of TeX --
BTW, has anyone tried to use TeX as a macroprocessor for anything else than typesetting ?). This is NOT
worse than CPP that does not allow quoting and recursion anyway.

The right version of M4 to get is GNU m4 which has the most features and the least bugs or limitations of
all. m4 is designed to be slow for anything but the simplest uses, which might still be ok for most assembly
programming (you are not writing million-lines assembly programs, are you?).

ftp://ftp.forth.org/pub/Forth/Compilers/native/unix/this4th.tar.gz
ftp://ftp.forth.org/pub/Forth/Compilers/native/unix/this4th.tar.gz
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Macroprocessing with your own filter
You can write your own simple macro-expansion filter with the usual tools: perl, awk, sed, etc. It can be
made rather quickly, and you control everything. But, of course, power in macroprocessing implies "the
hard way".

Metaprogramming
Instead of using an external filter that expands macros, one way to do things is to write programs that write
part or all of other programs.

For instance, you could use a program outputting source code

• to generate sine/cosine/whatever lookup tables,

• to extract a source-form representation of a binary file,

• to compile your bitmaps into fast display routines,

• to extract documentation, initialization/finalization code, description tables, as well as normal code from
the same source files,

• to have customized assembly code, generated from a perl/shell/scheme script that does arbitrary pro-
cessing,

• to propagate data defined at one point only into several cross-referencing tables and code chunks.

• etc.

Think about it!

Backends from compilers
Compilers like GCC, SML/NJ, Objective CAML, MIT-Scheme, CMUCL, etc, do have their own generic
assembler backend, which you might choose to use, if you intend to generate code semi-automatically
from the according languages, or from a language you hack: rather than write great assembly code, you
may instead modify a compiler so that it dumps great assembly code!

The New-Jersey Machine-Code Toolkit
There is a project, using the programming language Icon (with an experimental ML version), to build a
basis for producing assembly-manipulating code. See around  http://www.eecs.harvard.edu/~nr/toolkit/
[http://www.eecs.harvard.edu/~nr/toolkit/]

TUNES
The TUNES Project [http://www.tunes.org] for a Free Reflective Computing System is developing its own
assembler as an extension to the Scheme language, as part of its development process. It doesn't run at
all yet, though help is welcome.

The assembler manipulates abstract syntax trees, so it could equally serve as the basis for a assembly
syntax translator, a disassembler, a common assembler/compiler back-end, etc. Also, the full power of a
real language, Scheme, make it unchallenged as for macroprocessing/metaprogramming.

http://www.eecs.harvard.edu/~nr/toolkit/
http://www.eecs.harvard.edu/~nr/toolkit/
http://www.tunes.org
http://www.tunes.org
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Chapter 5. Calling conventions
Linux

Linking to GCC
This is the preferred way if you are developing mixed C-asm project. Check GCC docs and examples from
Linux kernel .S files that go through gas (not those that go through as86).

32-bit arguments are pushed down stack in reverse syntactic order (hence accessed/popped in the right
order), above the 32-bit near return address. %ebp, %esi, %edi, %ebx are callee-saved, other registers
are caller-saved; %eax is to hold the result, or %edx:%eax for 64-bit results.

FP stack: I'm not sure, but I think result is in st(0), whole stack caller-saved.

Note that GCC has options to modify the calling conventions by reserving registers, having arguments in
registers, not assuming the FPU, etc. Check the i386 .info pages.

Beware that you must then declare the cdecl or regparm(0) attribute for a function that will follow
standard GCC calling conventions. See C Extensions::Extended Asm:: section from the GCC
info pages. See also how Linux defines its asmlinkage macro.

ELF vs a.out problems
Some C compilers prepend an underscore before every symbol, while others do not.

Particularly, Linux a.out GCC does such prepending, while Linux ELF GCC does not.

If you need to cope with both behaviors at once, see how existing packages do. For instance, get an old
Linux source tree, the Elk, qthreads, or OCaml.

You can also override the implicit C->asm renaming by inserting statements like

 void foo asm("bar") (void);

to be sure that the C function foo() will be called really bar in assembly.

Note that the objcopy utility from the binutils package should allow you to transform your a.out objects
into ELF objects, and perhaps the contrary too, in some cases. More generally, it will do lots of file format
conversions.

Direct Linux syscalls
Often you will be told that using C library (libc) is the only way, and direct system calls are bad. This
is true. To some extent. In general, you must know that libc is not sacred, and in most cases it only does
some checks, then calls kernel, and then sets errno. You can easily do this in your program as well (if
you need to), and your program will be dozen times smaller, and this will result in improved performance
as well, just because you're not using shared libraries (static binaries are faster). Using or not using libc
in assembly programming is more a question of taste/belief than something practical. Remember, Linux
is aiming to be POSIX compliant, so does libc. This means that syntax of almost all libc "system calls"
exactly matches syntax of real kernel system calls (and vice versa). Besides, GNU libc(glibc) becomes
slower and slower from version to version, and eats more and more memory; and so, cases of using direct
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system calls become quite usual. However, the main drawback of throwing libc away is that you will
possibly need to implement several libc specific functions (that are not just syscall wrappers) on your own
(printf() and Co.), and you are ready for that, aren't you? :-)

Here is summary of direct system calls pros and cons.

Pros:

• the smallest possible size; squeezing the last byte out of the system

• the highest possible speed; squeezing cycles out of your favorite benchmark

• full control: you can adapt your program/library to your specific language or memory requirements or
whatever

• no pollution by libc cruft

• no pollution by C calling conventions (if you're developing your own language or environment)

• static binaries make you independent from libc upgrades or crashes, or from dangling #! path to an
interpreter (and are faster)

• just for the fun out of it (don't you get a kick out of assembly programming?)

Cons:

• If any other program on your computer uses the libc, then duplicating the libc code will actually wastes
memory, not saves it.

• Services redundantly implemented in many static binaries are a waste of memory. But you can make
your libc replacement a shared library.

• Size is much better saved by having some kind of bytecode, wordcode, or structure interpreter than
by writing everything in assembly. (the interpreter itself could be written either in C or assembly.)
The best way to keep multiple binaries small is to not have multiple binaries, but instead to have an
interpreter process files with #! prefix. This is how OCaml works when used in wordcode mode (as
opposed to optimized native code mode), and it is compatible with using the libc. This is also how Tom
Christiansen's Perl PowerTools reimplementation of unix utilities works. Finally, one last way to keep
things small, that doesn't depend on an external file with a hardcoded path, be it library or interpreter, is
to have only one binary, and have multiply-named hard or soft links to it: the same binary will provide
everything you need in an optimal space, with no redundancy of subroutines or useless binary headers;
it will dispatch its specific behavior according to its argv[0]; in case it isn't called with a recognized
name, it might default to a shell, and be possibly thus also usable as an interpreter!

• You cannot benefit from the many functionalities that libc provides besides mere linux syscalls: that
is, functionality described in section 3 of the manual pages, as opposed to section 2, such as malloc,
threads, locale, password, high-level network management, etc.

• Therefore, you might have to reimplement large parts of libc, from printf() to malloc()
and gethostbyname. It's redundant with the libc effort, and can be quite boring some-
times. Note that some people have already reimplemented "light" replacements for parts of the
libc - - check them out! (Redhat's minilibc, Rick Hohensee's libsys [ftp://linux01.gwdg.de/pub/
cLIeNUX/interim/libsys.tgz], Felix von Leitner's dietlibc [http://www.fefe.de/dietlibc/], asmutils
[http://asm.sourceforge.net/asmutils.html] project is working on pure assembly libc)

• Static libraries prevent you to benefit from libc upgrades as well as from libc add-ons such as the zlibc
package, that does on-the-fly transparent decompression of gzip-compressed files.

ftp://linux01.gwdg.de/pub/cLIeNUX/interim/libsys.tgz
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/libsys.tgz
ftp://linux01.gwdg.de/pub/cLIeNUX/interim/libsys.tgz
http://www.fefe.de/dietlibc/
http://www.fefe.de/dietlibc/
http://asm.sourceforge.net/asmutils.html
http://asm.sourceforge.net/asmutils.html
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• The few instructions added by the libc can be a ridiculously small speed overhead as compared to the
cost of a system call. If speed is a concern, your main problem is in your usage of system calls, not in
their wrapper's implementation.

• Using the standard assembly API for system calls is much slower than using the libc API when running in
micro-kernel versions of Linux such as L4Linux, that have their own faster calling convention, and pay
high convention-translation overhead when using the standard one (L4Linux comes with libc recompiled
with their syscall API; of course, you could recompile your code with their API, too).

• See previous discussion for general speed optimization issue.

• If syscalls are too slow to you, you might want to hack the kernel sources (in C) instead of staying in
userland.

If you've pondered the above pros and cons, and still want to use direct syscalls, then here is some advice.

• You can easily define your system calling functions in a portable way in C (as opposed to unportable
using assembly), by including asm/unistd.h, and using provided macros.

• Since you're trying to replace it, go get the sources for the libc, and grok them. (And if you think you
can do better, then send feedback to the authors!)

• As an example of pure assembly code that does everything you want, examine Linux assembly resources.

Basically, you issue an int 0x80, with the __NR_syscallname number (from asm/unistd.h) in
eax, and parameters (up to six) in ebx, ecx, edx, esi, edi,  ebp respectively.

Result is returned in eax, with a negative result being an error, whose opposite is what libc would put into
errno. The user-stack is not touched, so you needn't have a valid one when doing a syscall.

Note

 Passing sixth parameter in ebp appeared in Linux 2.4, previous Linux versions understand only
5 parameters in registers.

Linux Kernel Internals [http://www.tldp.org/LDP/lki/], and especially  How System Calls Are Implement-
ed on i386 Architecture? [http://www.tldp.org/LDP/lki/lki-2.html#ss2.11] chapter will give you more ro-
bust overview.

As for the invocation arguments passed to a process upon startup, the general principle is that the stack
originally contains the number of arguments argc, then the list of pointers that constitute *argv, then
a null-terminated sequence of null-terminated variable=value strings for the environment. For
more details, do examine Linux assembly resources, read the sources of C startup code from your libc
(crt0.S or crt1.S), or those from the Linux kernel (exec.c and binfmt_*.c in linux/fs/).

Hardware I/O under Linux
If you want to perform direct port I/O under Linux, either it's something very simple that does not need
OS arbitration, and you should see the IO-Port-Programming mini-HOWTO; or it needs a kernel
device driver, and you should try to learn more about kernel hacking, device driver development, kernel
modules, etc, for which there are other excellent HOWTOs and documents from the LDP.

Particularly, if what you want is Graphics programming, then do join one of the GGI [http://www.ggi-
project.org/] or XFree86 [http://www.XFree86.org/] projects.

Some people have even done better, writing small and robust XFree86 drivers in an interpreted do-
main-specific language, GAL, and achieving the efficiency of hand C-written drivers through partial eval-

http://www.tldp.org/LDP/lki/
http://www.tldp.org/LDP/lki/
http://www.tldp.org/LDP/lki/lki-2.html#ss2.11
http://www.tldp.org/LDP/lki/lki-2.html#ss2.11
http://www.tldp.org/LDP/lki/lki-2.html#ss2.11
http://www.ggi-project.org/
http://www.ggi-project.org/
http://www.ggi-project.org/
http://www.XFree86.org/
http://www.XFree86.org/
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uation (drivers not only not in asm, but not even in C!). The problem is that the partial evaluator they used
to achieve efficiency is not free software. Any taker for a replacement?

Anyway, in all these cases, you'll be better when using GCC inline assembly with the macros from lin-
ux/asm/*.h than writing full assembly source files.

Accessing 16-bit drivers from Linux/i386
Such thing is theoretically possible (proof: see how DOSEMU [http://www.dosemu.org] can selectively
grant hardware port access to programs), and I've heard rumors that someone somewhere did actually do it
(in the PCI driver? Some VESA access stuff? ISA PnP? dunno). If you have some more precise information
on that, you'll be most welcome. Anyway, good places to look for more information are the Linux kernel
sources, DOSEMU sources, and sources for various low-level programs under Linux. (perhaps GGI if it
supports VESA).

Basically, you must either use 16-bit protected mode or vm86 mode.

The first is simpler to setup, but only works with well-behaved code that won't do any kind of segment
arithmetics or absolute segment addressing (particularly addressing segment 0), unless by chance it hap-
pens that all segments used can be setup in advance in the LDT.

The later allows for more "compatibility" with vanilla 16-bit environments, but requires more complicated
handling.

In both cases, before you can jump to 16-bit code, you must

• mmap any absolute address used in the 16-bit code (such as ROM, video buffers, DMA targets, and
memory-mapped I/O) from /dev/mem to your process' address space,

• setup the LDT and/or vm86 mode monitor.

• grab proper I/O permissions from the kernel (see the above section)

Again, carefully read the source for the stuff contributed to the DOSEMU project, particularly these mi-
ni-emulators for running ELKS and/or simple .COM programs under Linux/i386.

DOS and Windows
Most DOS extenders come with some interface to DOS services. Read their docs about that, but often,
they just simulate int 0x21 and such, so you do "as if" you are in real mode (I doubt they have more
than stubs and extend things to work with 32-bit operands; they most likely will just reflect the interrupt
into the real-mode or vm86 handler).

Docs about DPMI (and much more) can be found on  http://en.wikipedia.org/wi-
ki/DOS_Protected_Mode_Interface [http://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface]).

DJGPP comes with its own (limited) glibc derivative/subset/replacement, too.

It is possible to cross-compile from Linux to DOS, see the devel/msdos/ directory of your lo-
cal FTP mirror for metalab.unc.edu; Also see the MOSS DOS-extender from the Flux project [http://
www.cs.utah.edu/projects/flux/] from the university of Utah.

Other documents and FAQs are more DOS-centered; we do not recommend DOS development.

Windows and Co.  This document is not about Windows programming, you can find lots of docu-
ments about it everywhere... The thing you should know is that there is the cygwin32.dll library [http://

http://www.dosemu.org
http://www.dosemu.org
http://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface
http://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface
http://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface
http://www.cs.utah.edu/projects/flux/
http://www.cs.utah.edu/projects/flux/
http://www.cs.utah.edu/projects/flux/
http://www.cygwin.com
http://www.cygwin.com
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www.cygwin.com], for GNU programs to run on Win32 platform; thus, you can use GCC, GAS, all the
GNU tools, and many other Unix applications.

Your own OS
Control is what attracts many OS developers to assembly, often is what leads to or stems from assembly
hacking. Note that any system that allows self-development could be qualified an "OS", though it can run
"on the top" of an underlying system (much like Linux over Mach or OpenGenera over Unix).

Hence, for easier debugging purpose, you might like to develop your "OS" first as a process running on
top of Linux (despite the slowness), then use the Flux OS kit [http://www.cs.utah.edu/projects/flux/oskit/]
(which grants use of Linux and BSD drivers in your own OS) to make it stand-alone. When your OS is
stable, it is time to write your own hardware drivers if you really love that.

This HOWTO will not cover topics such as bootloader code, getting into 32-bit mode, handling Interrupts,
the basics about Intel protected mode or V86/R86 braindeadness, defining your object format and calling
conventions.

The main place where to find reliable information about that all, is source code of existing OSes and boot-
loaders. Lots of pointers are on the following webpage:  http://www.tunes.org/Review/OSes.html [http://
www.tunes.org/Review/OSes.html]

http://www.cygwin.com
http://www.cs.utah.edu/projects/flux/oskit/
http://www.cs.utah.edu/projects/flux/oskit/
http://www.tunes.org/Review/OSes.html
http://www.tunes.org/Review/OSes.html
http://www.tunes.org/Review/OSes.html
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Chapter 6. Quick start

Introduction
Finally, if you still want to try this crazy idea and write something in assembly (if you've reached this
section -- you're real assembly fan), here's what you need to start.

As you've read before, you can write for Linux in different ways; I'll show how to use direct kernel calls,
since this is the fastest way to call kernel service; our code is not linked to any library, does not use ELF
interpreter, it communicates with kernel directly.

I will show the same sample program in two assemblers, nasm and gas, thus showing Intel and AT&T
syntax.

You may also want to read  Introduction to UNIX assembly programming [http://asm.sourceforge.net/
intro.html] tutorial, it contains sample code for other UNIX-like OSes.

Tools you need

First of all you need assembler (compiler) -- nasm or gas.

Second, you need a linker -- ld, since assembler produces only object code. Almost all distributions have
gas and ld, in the binutils package.

As for nasm, you may have to download and install binary packages for Linux and docs from the nasm
site; note that several distributions (Stampede, Debian, SuSe, Mandrake) already have nasm, check first.

If you're going to dig in, you should also install include files for your OS, and if possible, kernel source.

Hello, world!

Program layout

Linux is 32-bit, runs in protected mode, has flat memory model, and uses the ELF format for binaries.

A program can be divided into sections: .text for your code (read-only), .data for your data (read-
write), .bss for uninitialized data (read-write); there can actually be a few other standard sections, as
well as some user-defined sections, but there's rare need to use them and they are out of our interest here.
A program must have at least .text section.

Now we will write our first program. Here is sample code:

NASM (hello.asm)

section .text                   ;section declaration

                                ;we must export the entry point to the ELF linker or
    global  _start              ;loader. They conventionally recognize _start as their

http://asm.sourceforge.net/intro.html
http://asm.sourceforge.net/intro.html
http://asm.sourceforge.net/intro.html
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                             ;entry point. Use ld -e foo to override the default.

_start:

                                ;write our string to stdout

    mov     edx,len             ;third argument: message length
    mov     ecx,msg             ;second argument: pointer to message to write
    mov     ebx,1               ;first argument: file handle (stdout)
    mov     eax,4               ;system call number (sys_write)
    int     0x80                ;call kernel

                                ;and exit

   mov     ebx,0               ;first syscall argument: exit code
    mov     eax,1               ;system call number (sys_exit)
    int     0x80                ;call kernel

section .data                   ;section declaration

msg db      "Hello, world!",0xa ;our dear string
len equ     $ - msg             ;length of our dear string

GAS (hello.S)

.text                           # section declaration

                             # we must export the entry point to the ELF linker or
    .global _start              # loader. They conventionally recognize _start as their
                             # entry point. Use ld -e foo to override the default.

_start:

                                # write our string to stdout

   movl    $len,%edx           # third argument: message length
   movl    $msg,%ecx           # second argument: pointer to message to write
   movl    $1,%ebx             # first argument: file handle (stdout)
   movl    $4,%eax             # system call number (sys_write)
   int     $0x80               # call kernel

                                # and exit

   movl    $0,%ebx             # first argument: exit code
   movl    $1,%eax             # system call number (sys_exit)
   int     $0x80               # call kernel

.data                           # section declaration

msg:
 .ascii    "Hello, world!\n"   # our dear string
 len = . - msg                 # length of our dear string
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Building an executable

Producing object code
First step of building an executable is compiling (or assembling) object file from the source:

For nasm example:

$ nasm -f elf hello.asm

For gas example:

$ as -o hello.o hello.S

This makes hello.o object file.

Producing executable
Second step is producing executable file itself from the object file by invoking linker:

$ ld -s -o hello hello.o

This will finally build hello executable.

Hey, try to run it... Works? That's it. Pretty simple.

MIPS Example
As a demonstration of a fact that there's a universe other than x86, here comes an example program for
MIPS by Spencer Parkin.

# hello.S by Spencer T. Parkin

# This is my first MIPS-RISC assembly program!
# To compile this program type:
# > gcc -o hello hello.S -non_shared

# This program compiles without errors or warnings
# on a PlayStation2 MIPS R5900 (EE Core).
# EE stands for Emotion Engine...lame!

# The -non_shared option tells gcc that we`re
# not interrested in compiling relocatable code.
# If we were, we would need to follow the PIC-
# ABI calling conventions and other protocols.

#include <asm/regdef.h>  // ...for human readable register names
#include <asm/unistd.h>  // ...for system serivices   
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  .rdata     # begin read-only data segment
  .align  2   # because of the way memory is built
hello:  .asciz  "Hello, world!\n" # a null terminated string
  .align  4   # because of the way memory is built
length:  .word  . - hello  # length = IC - (hello-addr)
  .text     # begin code segment
  .globl  main   # for gcc/ld linking
  .ent  main   # for gdb debugging info.
main:  # We must specify -non_shared to gcc or we`ll need these 3 lines that fallow.
#  .set  noreorder  # disable instruction reordering
#  .cpload  t9   # PIC ABI crap (function prologue)
#  .set  reorder   # re-enable instruction reordering
  move  a0,$0   # load stdout fd
  la  a1,hello  # load string address
  lw  a2,length  # load string length
  li  v0,__NR_write  # specify system write service
  syscall     # call the kernel (write string)
  li  v0,0   # load return code
  j  ra   # return to caller
  .end  main   # for dgb debugging info.

# That`s all folks!
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Chapter 7. Resources
Pointers

Your main resource for Linux/UNIX assembly programming material is:

http://asm.sourceforge.net/resources.html [http://asm.sourceforge.net/resources.html]

Do visit it, and get plenty of pointers to assembly projects, tools, tutorials, documentation, guides, etc,
concerning different UNIX operating systems and CPUs. Because it evolves quickly, I will no longer
duplicate it here.

If you are new to assembly in general, here are few starting pointers: 

• Programming from the ground up [http://savannah.nongnu.org/projects/pgubook/]

• x86 assembly FAQ (use Google)

• CoreWars [http://www.koth.org], a fun way to learn assembly in general

• Usenet: comp.lang.asm.x86 [news://comp.lang.asm.x86]; alt.lang.asm [news://alt.lang.asm]

Mailing list
If you're are interested in Linux/UNIX assembly programming (or have questions, or are just curious) I
especially invite you to join Linux assembly programming mailing list.

This is an open discussion of assembly programming under Linux, *BSD, BeOS, or any other UNIX/
POSIX like OS; also it is not limited to x86 assembly (Alpha, Sparc, PPC and other hackers are welcome
too!).

Mailing list address is <linux-assembly@vger.kernel.org>.

To subscribe send a messgage to <majordomo@vger.kernel.org> with the following line in the
body of the message:

subscribe linux-assembly

Detailed information and list archives are available at  http://asm.sourceforge.net/list.html [http://
asm.sourceforge.net/list.html].

http://asm.sourceforge.net/resources.html
http://asm.sourceforge.net/resources.html
http://savannah.nongnu.org/projects/pgubook/
http://savannah.nongnu.org/projects/pgubook/
http://www.koth.org
http://www.koth.org
news://comp.lang.asm.x86
news://comp.lang.asm.x86
news://alt.lang.asm
news://alt.lang.asm
http://asm.sourceforge.net/list.html
http://asm.sourceforge.net/list.html
http://asm.sourceforge.net/list.html
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Chapter 8. Frequently Asked Questions
Here are frequently asked questions (with answers) about Linux assembly programming. Some of the
questions (and the answers) were taken from the the linux-assembly mailing list.

8.1. How do I do graphics programming in Linux?

An answer from Paul Furber [mailto:paulf@gam.co.za]:

Ok you have a number of options to graphics in Linux. Which one you use
depends on what you want to do. There isn't one Web site with all the
information but here are some tips:

SVGALib: This is a C library for console SVGA access.
Pros: very easy to learn, good coding examples, not all that different
from equivalent gfx libraries for DOS, all the effects you know from DOS
can be converted with little difficulty.
Cons: programs need superuser rights to run since they write directly to
the hardware, doesn't work with all chipsets, can't run under X-Windows.
Search for svgalib-1.4.x on http://ftp.is.co.za

Framebuffer: do it yourself graphics at SVGA res
Pros: fast, linear mapped video access, ASM can be used if you want :)
Cons: has to be compiled into the kernel, chipset-specific issues, must
switch out of X to run, relies on good knowledge of linux system calls
and kernel, tough to debug
Examples: asmutils (http://www.linuxassembly.org) and the leaves example
and my own site for some framebuffer code and tips in asm
(http://ma.verick.co.za/linux4k/)

Xlib: the application and development libraries for XFree86.
Pros: Complete control over your X application
Cons: Difficult to learn, horrible to work with and requires quite a bit
of knowledge as to how X works at the low level. 
Not recommended but if you're really masochistic go for it. All the
include and lib files are probably installed already so you have what
you need. 

Low-level APIs: include PTC, SDL, GGI and Clanlib
Pros: very flexible, run under X or the console, generally abstract away
the video hardware a little so you can draw to a linear surface, lots of
good coding examples, can link to other APIs like OpenGL and sound libs,
Windows DirectX versions for free
Cons: Not as fast as doing it yourself, often in development so versions
can (and do) change frequently.
Examples: PTC and GGI have excellent demos, SDL is used in sdlQuake,
Myth II, Civ CTP and Clanlib has been used for games as well.

High-level APIs: OpenGL - any others?
Pros: clean api, tons of functionality and examples, industry standard
so you can learn from SGI demos for example
Cons: hardware acceleration is normally a must, some quirks between

mailto:paulf@gam.co.za
mailto:paulf@gam.co.za
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versions and platforms
Examples: loads - check out www.mesa3d.org under the links section.

To get going try looking at the svgalib examples and also install SDL
and get it working. After that, the sky's the limit.

8.2. How do I debug pure assembly code under Linux?

There's an early version of the Assembly Language Debugger [http://ald.sourceforge.net], which
is designed to work with assembly code, and is portable enough to run on Linux and *BSD. It is
already functional and should be the right choice, check it out!

You can also try gdb ;). Although it is source-level debugger, it can be used to debug pure assembly
code, and with some trickery you can make gdb to do what you need (unfortunately, nasm '-g'
switch does not generate proper debug info for gdb; this is nasm bug, I think). Here's an answer
from Dmitry Bakhvalov [mailto:dl@gazeta.ru]:

Personally, I use gdb for debugging asmutils. Try this:
 
1) Use the following stuff to compile:
   $ nasm -f elf -g smth.asm
   $ ld -o smth smth.o

2) Fire up gdb:
   $ gdb smth

3) In gdb:
   (gdb) disassemble _start
   Place a breakpoint at _start+1 (If placed at _start the breakpoint
   wouldnt work, dunno why)
   (gdb) b *0x8048075

   To step thru the code I use the following macro:
   (gdb)define n
   >ni
   >printf "eax=%x ebx=%x ...etc...",$eax,$ebx,...etc...
   >disassemble $pc $pc+15
   >end

   Then start the program with r command and debug with n.

   Hope this helps.

An additional note from ???:

    I have such a macro in my .gdbinit for quite some time now, and it
    for sure makes life easier. A small difference : I use "x /8i $pc",
    which guarantee a fixed number of disassembled instructions. Then,
    with a well chosen size for my xterm, gdb output looks like it is
    refreshed, and not scrolling.

If you want to set breakpoints across your code, you can just use int 3 instruction as breakpoint
(instead of entering address manually in gdb).

http://ald.sourceforge.net
http://ald.sourceforge.net
mailto:dl@gazeta.ru
mailto:dl@gazeta.ru
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If you're using gas, you should consult gas and gdb related tutorials [http://asm.sourceforge.net/
resources.html#tutorials].

8.3. Any other useful debugging tools?

Definitely strace can help a lot (ktrace and kdump on FreeBSD), it is used to trace system calls
and signals. Read its manual page (man strace) and strace - -help output for details.

8.4. How do I access BIOS functions from Linux (BSD, BeOS, etc)?

Short answer is -- noway. This is protected mode, use OS services instead. Again, you can't use
int 0x10, int 0x13, etc. Fortunately almost everything can be implemented by means of
system calls or library functions. In the worst case you may go through direct port access, or make
a kernel patch to implement needed functionality, or use LRMI library to access BIOS functions.

8.5. Is it possible to write kernel modules in assembly?

Yes, indeed it is. While in general it is not a good idea (it hardly will speedup anything), there may
be a need of such wizardy. The process of writing a module itself is not that hard - - a module must
have some predefined global function, it may also need to call some external functions from the
kernel. Examine kernel source code (that can be built as module) for details.

Meanwhile, here's an example of a minimum dumb kernel module (module.asm) (source is
based on example by mammon_ from APJ #8):

section .text

 global init_module
 global cleanup_module
 global kernel_version

 extern printk

init_module:
 push dword str1
 call printk
 pop eax
 xor eax,eax
 ret

cleanup_module:
 push dword str2
 call printk
 pop eax
 ret
 
str1  db "init_module done",0xa,0
str2  db "cleanup_module done",0xa,0

kernel_version db "2.2.18",0

The only thing this example does is reporting its actions. Modify kernel_version to match
yours, and build module with:

http://asm.sourceforge.net/resources.html#tutorials
http://asm.sourceforge.net/resources.html#tutorials
http://asm.sourceforge.net/resources.html#tutorials
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$ nasm -f elf -o module.m module.asm

$ ld -r -o module.o module.m

Now you can play with it using insmod/rmmod/lsmod (root privilidged are required); a lot of
fun, huh?

8.6. How do I allocate memory dynamically?

A laconic answer from H-Peter Recktenwald [mailto:phpr@snafu.de]:

 ebx := 0 (in fact, any value below .bss seems to do)
 sys_brk
 eax := current top (of .bss section)

 ebx := [ current top < ebx < (esp - 16K) ]
 sys_brk
 eax := new top of .bss

An extensive answer from Tiago Gasiba [mailto:ee97034@fe.up.pt]:

section .bss

var1 resb 1

section .text

;
;allocate memory
;

%define LIMIT 0x4000000   ; about 100Megs

 mov ebx,0    ; get bottom of data segment
 call sys_brk

 cmp eax,-1    ; ok?
 je erro1

 add eax,LIMIT   ; allocate +LIMIT memory
 mov ebx,eax
 call sys_brk
 
 cmp eax,-1    ; ok?
 je erro1

 cmp eax,var1+1   ; has the data segment grown?
 je erro1

;

mailto:phpr@snafu.de
mailto:phpr@snafu.de
mailto:ee97034@fe.up.pt
mailto:ee97034@fe.up.pt
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;use allocated memory
;
      ; now eax contains bottom of
      ; data segment
 mov ebx,eax    ; save bottom
 mov eax,var1   ; eax=beginning of data segment
repeat: 
 mov word [eax],1   ; fill up with 1's
 inc eax
 cmp ebx,eax    ; current pos = bottom?
 jne repeat

;
;free memory
;

 mov ebx,var1   ; deallocate memory
 call sys_brk    ; by forcing its beginning=var1

 cmp eax,-1    ; ok?
 je erro2

8.7. I can't understand how to use select system call!

An answer from Patrick Mochel [mailto:mochel@transmeta.com]:

When you call sys_open, you get back a file descriptor, which is simply an
index into a table of all the open file descriptors that your process has.
stdin, stdout, and stderr are always 0, 1, and 2, respectively, because
that is the order in which they are always open for your process from there.
Also, notice that the first file descriptor that you open yourself (w/o first
closing any of those magic three descriptors) is always 3, and they increment
from there.

Understanding the index scheme will explain what select does. When you
call select, you are saying that you are waiting certain file descriptors
to read from, certain ones to write from, and certain ones to watch from
exceptions from. Your process can have up to 1024 file descriptors open,
so an fd_set is just a bit mask describing which file descriptors are valid
for each operation. Make sense?

Since each fd that you have open is just an index, and it only needs to be
on or off for each fd_set, you need only 1024 bits for an fd_set structure.
1024 / 32 = 32 longs needed to represent the structure.

Now, for the loose example.
Suppose you want to read from a file descriptor (w/o timeout).

- Allocate the equivalent to an fd_set.  

.data

my_fds: times 32 dd 0

mailto:mochel@transmeta.com
mailto:mochel@transmeta.com
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- open the file descriptor that you want to read from.

- set that bit in the fd_set structure.

   First, you need to figure out which of the 32 dwords the bit is in.  

   Then, use bts to set the bit in that dword. bts will do a modulo 32
   when setting the bit. That's why you need to first figure out which
   dword to start with.

   mov edx, 0
   mov ebx, 32
   div ebx

   lea ebx, my_fds
   bts ebx[eax * 4], edx

- repeat the last step for any file descriptors you want to read from.

- repeat the entire exercise for either of the other two fd_sets if you want action from them.

That leaves two other parts of the equation - the n paramter and the timeout
parameter. I'll leave the timeout parameter as an exercise for the reader
(yes, I'm lazy), but I'll briefly talk about the n parameter.

It is the value of the largest file descriptor you are selecting from (from
any of the fd_sets), plus one. Why plus one? Well, because it's easy to
determine a mask from that value. Suppose that there is data available on
x file descriptors, but the highest one you care about is (n - 1). Since
an fd_set is just a bitmask, the kernel needs some efficient way for
determining whether to return or not from select. So, it masks off the bits
that you care about, checks if anything is available from the bits that are
still set, and returns if there is (pause as I rummage through kernel source).
Well, it's not as easy as I fantasized it would be. To see how the kernel
determines that mask, look in fs/select.c in the kernel source tree.

Anyway, you need to know that number, and the easiest way to do it is to save
the value of the last file descriptor open somewhere so you don't lose it.

Ok, that's what I know. A warning about the code above (as always) is that
it is not tested. I think it should work, but if it doesn't let me know.
But, if it starts a global nuclear meltdown, don't call me. ;-)

That's all for now, folks.
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Appendix A. History
Each version includes a few fixes and minor corrections, that need not to be repeatedly mentioned every
time.

Revision History
Revision 0.7 3 Mar 2013 lnoor
New maintainer, Reformatted as DocBook XML, Checked, updated or replaced dead links.
Revision 0.6g 11 Feb 2006 konst
Added AASM, updated FASM, added MIPS example to Quick Start section, added URLs to Turkish and
Russian translations, misc URL updates
Revision 0.6f 17 Aug 2002 konst
Added FASM, added URL to Korean translation, added URL to SVR4 i386 ABI specs, update on HLA/
Linux, small fix in hello.S example, misc URL updates
Revision 0.6e 12 Jan 2002 konst
Added URL describing GAS Intel syntax; Added OSIMPA(former SHASM); Added YASM; FAQ update.
Revision 0.6d 18 Mar 2001 konst
Added Free Pascal; new NASM URL again
Revision 0.6c 15 Feb 2001 konst
Added SHASM; new answer in FAQ, new NASM URL, new mailing list address
Revision 0.6b 21 Jan 2001 konst
new questions in FAQ, corrected few URLs
Revision 0.6a 10 Dec 2000 konst
Remade section on AS86 (thanks to Holluby Istvan for pointing out obsolete information). Fixed several
URLs that can be incorrectly rendered from sgml to html.
Revision 0.6 11 Nov 2000 konst
HOWTO is completely rewritten using DocBook DTD. Layout is totally rearranged; too much changes
to list them here.
Revision 0.5n 07 Nov 2000 konst
Added question regarding kernel modules to FAQ, fixed NASM URLs, GAS has Intel syntax too
Revision 0.5m 22 Oct 2000 konst
Linux 2.4 system calls can have 6 args, Added ALD note to FAQ, fixed mailing list subscribe address
Revision 0.5l 23 Aug 2000 konst
Added TDASM, updates on NASM
Revision 0.5k 11 Jul 2000 konst
Few additions to FAQ
Revision 0.5j 14 Jun 2000 konst
Complete rearrangement of Introduction and Resources sections. FAQ added to Resources, misc cleanups
and additions.
Revision 0.5i 04 May 2000 konst
Added HLA, TALC; rearrangements in Resources, Quick Start sections. Few new pointers.
Revision 0.5h 09 Apr 2000 konst
finally managed to state LDP license on document, new resources added, misc fixes
Revision 0.5g 26 Mar 2000 konst
new resources on different CPUs
Revision 0.5f 02 Mar 2000 konst
new resources, misc corrections
Revision 0.5e 10 Feb 2000 konst
URL updates, changes in GAS example
Revision 0.5d 01 Feb 2000 konst
Resources (former "Pointers") section completely redone, various URL updates.
Revision 0.5c 05 Dec 1999 konst
New pointers, updates and some rearrangements. Rewrite of sgml source.
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Revision 0.5b 19 Sep 1999 konst
Discussion about libc or not libc continues. New web pointers and overall updates.
Revision 0.5a 01 Aug 1999 konst
Quick Start section rearranged, added GAS example. Several new web pointers.
Revision 0.5 01 Aug 1999 konst, fare
GAS has 16-bit mode. New maintainer (at last): Konstantin Boldyshev. Discussion about libc or not libc.
Added Quick Start section with examples of assembly code.
Revision 0.4q 22 Jun 1999 fare
process argument passing (argc, argv, environ) in assembly. This is yet another "last release by Fare before
new maintainer takes over". Nobody knows who might be the new maintainer.
Revision 0.4p 06 Jun 1999 fare
clean up and updates
Revision 0.4o 01 Dec 1998 fare
Revision 0.4m 23 Mar 1998 fare
corrections about gcc invocation
Revision 0.4l 16 Nov 1997 fare
release for LSL 6th edition
Revision 0.4k 19 Oct 1997 fare
Revision 0.4j 07 Sep 1997 fare
Revision 0.4i 17 Jul 1997 fare
info on 16-bit mode access from Linux
Revision 0.4h 19 Jun 1997 fare
still more on "how not to use assembly"; updates on NASM, GAS.
Revision 0.4g 30 Mar 1997 fare
Revision 0.4f 20 Mar 1997 fare
Revision 0.4e 13 Mar 1997 fare
Release for DrLinux
Revision 0.4d 28 Feb 1997 fare
Vapor announce of a new Assembly-HOWTO maintainer
Revision 0.4c 09 Feb 1997 fare
Added section Do you need assembly?.
Revision 0.4b 03 Feb 1997 fare
NASM moved: now is before AS86
Revision 0.4a 20 Jan 1997 fare
CREDITS section added
Revision 0.4 20 Jan 1997 fare
first release of the HOWTO as such
Revision 0.4pre1 13 Jan 1997 fare
text mini-HOWTO transformed into a full linuxdoc-sgml HOWTO, to see what the SGML tools are like
Revision 0.3l 11 Jan 1997 fare
Revision 0.3k 19 Dec 1996 fare
What? I had forgotten to point to terse???
Revision 0.3j 24 Nov 1996 fare
point to French translated version
Revision 0.3i 16 Nov 1996 fare
NASM is getting pretty slick
Revision 0.3h 06 Nov 1996 fare
more about cross-compiling - - See on sunsite: devel/msdos/
Revision 0.3g 02 Nov 1996 fare
Created the History. Added pointers in cross-compiling section. Added section about I/O programming
under Linux (particularly video).
Revision 0.3f 17 Oct 1996 fare
Revision 0.3c 15 Jun 1996 fare
Revision 0.2 04 May 1996 fare
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Revision 0.1 23 Apr 1996 fare
Francois-Rene "Fare" Rideau creates and publishes the first mini-HOWTO, because "I'm sick of answering
ever the same questions on comp.lang.asm.x86"
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Appendix C. Endorsements
This version of the document is endorsed by Leo Noordergraaf.

Modifications (including translations) must remove this appendix according to the license agreement.

$Id$
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Appendix D. GNU Free Documentation
License

GNU Free Documentation License
Version 1.1, March 2000

    Copyright (C) 2000  Free Software Foundation, Inc.
    59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    Everyone is permitted to copy and distribute verbatim copies
    of this license document, but changing it is not allowed.

0. PREAMBLE The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure every-
one the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DE-
FINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee,
and is addressed as "you".

A "Modified Version" of the Document means any work containing
the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document's over-
all subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (For example, if the Docu-
ment is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or
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of legal, commercial, philosophical, ethical or political position re-
garding them.

The "Invariant Sections" are certain Secondary Sections whose ti-
tles are designated, as being those of Invariant Sections, in the no-
tice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says
that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable
copy, represented in a format whose specification is available to
the general public, whose contents can be viewed and edited direct-
ly and straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart
or discourage subsequent modification by readers is not Transpar-
ent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and standard-con-
forming simple HTML designed for human modification. Opaque
formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not general-
ly available, and the machine-generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats
which do not have any title page as such, "Title Page" means the text
near the most prominent appearance of the work's title, preceding
the beginning of the body of the text.

2. VERBATIM COPYING You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may ac-
cept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
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3. COPYING IN QUANTITY If you publish printed copies of the Document numbering more than
100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legi-
bly, you should put the first ones listed (as many as fit reasonably)
on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-
bering more than 100, you must either include a machine-read-
able Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document,
free of added material, which the general network-using public has
access to download anonymously at no charge using public-stan-
dard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies,
to give them a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous ver-
sion if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).



GNU Free Documentation License

41

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications ad-
jacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it
an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version
as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and like-
wise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section's title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent
are not considered part of the section titles.

M.Delete any section entitled "Endorsements". Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements" or to con-
flict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or ap-
pendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.
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You may add a section entitled "Endorsements", provided it con-
tains nothing but endorsements of your Modified Version by vari-
ous parties- -for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end of
the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this Li-
cense give permission to use their names for publicity for or to as-
sert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS You may combine the Document with other documents released
under this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodi-
fied, and list them all as Invariant Sections of your combined work
in its license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original au-
thor or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "Histo-
ry" in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledge-
ments", and any sections entitled "Dedications". You must delete
all sections entitled "Endorsements."

6. COLLECTIONS OF DOCU-
MENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and dis-
tribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
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7. AGGREGATION WITH INDE-
PENDENT WORKS

A compilation of the Document or its derivatives with other sep-
arate and independent documents or works, in or on a volume of
a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copy-
right is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self-con-
tained works thus compiled with the Document, on account of their
being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quar-
ter of the entire aggregate, the Document's Cover Texts may be
placed on covers that surround only the Document within the ag-
gregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION Translation is considered a kind of modification, so you may dis-
tribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special per-
mission from their copyright holders, but you may include transla-
tions of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English
version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original
English version will prevail.

9. TERMINATION You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other at-
tempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this Li-
cense. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF
THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See  http://
www.gnu.org/copyleft/ [http://www.gnu.org/copyleft/].

Each version of the License is given a distinguishing version num-
ber. If the Document specifies that a particular numbered version of
this License "or any later version" applies to it, you have the option
of following the terms and conditions either of that specified ver-
sion or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

How to use this License for your
documents

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
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      Copyright (c)  YEAR  YOUR NAME.
      Permission is granted to copy, distribute and/or modify this document
      under the terms of the GNU Free Documentation License, Version 1.1
      or any later version published by the Free Software Foundation;
      with the Invariant Sections being LIST THEIR TITLES, with the
      Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
      A copy of the license is included in the section entitled "GNU
      Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sec-
tions" instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-
Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice
of free software license, such as the GNU General Public License,
to permit their use in free software.
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