C++ dlopen mini HOWTO

Aaron Isotton <aar on@ sott on. conp
2006-03-16

Revision History
Revision 1.10 2006-03-16 Al
Changed the license from the GFDL to the GPL. Fixed usage of dler-
ror; thanks to Carmelo Piccione. Using a virtual destructor in the exam-
ple; thanks to Joerg Knobloch. Added Source Code section. Minor fixes.

Revision 1.03 2003-08-12 Al
Added reference to the GLib Dynamic Module Loader. Thanks to G. V. Sriraam for the pointer.
Revision 1.02 2002-12-08 Al
Added FAQ. Minor changes
Revision 1.01 2002-06-30 Al
Updated virtual destructor explanation. Minor changes.
Revision 1.00 2002-06-19 Al
Moved copyright and license section to the beginning. Added terms section. Minor changes.
Revision 0.97 2002-06-19 JYG
Entered minor grammar and sentence level changes.
Revision 0.96 2002-06-12 Al
Added bibliography. Corrected explanation of extern functions and variables.
Revision 0.95 2002-06-11 Al

Minor improvements.
Abstract

How to dynamically load C++ functions and classes using the dl open API.

Table of Contents

111 (0o [0 Tox 1 o o S
CopYright N LICENSE ...ttt ettt e e et e e e et e e e eab e eens
(11 o = 1 1=
CreditS / CONIIDULOISveeiii e e et e e e e e e e e e
FEEADACK . .onivieieee e
Terms Used in thiS DOCUMENToviitiieii e aees

BN =T] o = 1
NEME MANGIING ...ttt ettt et et e e et e eaas
(O = N

BN TS o] 1V 1 o o S
EXE B N e e
LOBAING FUNCLIONSuiieiite ettt ettt e e et e e ettt e e e et e e e enba e eeenes
LOBAING CIBSSESteeiiti ettt e e et e e et e e

RS0 U oI O o =N

Frequently ASKed QUESLIONScoeuuieieiii ettt ettt et e e et e et e e e et e e e ena s

ST I Y K= o PR

2] ol oo = o] VAPPSR

C++ dlopen mini HOWTO

Introduction

A question which frequently arises among Unix C++ programmers is how to load C++ functions and
classes dynamically using the dl open API.

In fact, that is not always simple and needs some explanation. That's what this mini HOWTO does.

An average understanding of the C and C++ programming language and of thedl open API is necessary
to understand this document.

ThisHOWTO's master location is http://www.isotton.com/howtos/C++-dlopen-mini-HOWTO/.

Copyright and License

This document, C++ dlopen mini HOWTO, is copyrighted (¢) 2002-2006 by Aaron Isotton. Permission
is granted to copy, distribute and/or modify this document under the terms of the GNU General Public
License, Version 2, as published by the Free Software Foundation.

Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examples and information
at your own risk. There may be errors and inaccuracies, that could be damaging to your system. Proceed
with caution, and although thisis highly unlikely, the author(s) do not take any responsibility.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a

term in this document should not be regarded as affecting the validity of any trademark or service mark.
Naming of particular products or brands should not be seen as endorsements.

Credits / Contributors

In this document, | have the pleasure of acknowledging (in a phabetic order):
* Joy Y Goodreau <j oyg (at) us.ibm conw for her editing.

o D.Stimitis<stim tis (at) idconm con for pointing out afew issueswith the formatting and
the name mangling, as well as pointing out afew subtletiesof extern " C".

Many unnamed others pointing out errors or giving tips to improve this howto. Y ou know who you are!

Feedback

Feedback is most certainly welcome for this document. Send your additions, comments and criticisms to
the following email address: <aar on@ sot t on. conp.

Terms Used in this Document

dl open APl The dl cl ose, dl error, dl open and dl sym functions as described in the
dl open(3) man page.

Noticethat weuse“dl open” torefer totheindividual dI open function, and “dl open
API” to refer to the entire API.

http://www.isotton.com/howtos/C++-dlopen-mini-HOWTO/

C++ dlopen mini HOWTO

The Problem

At some time you might have to load alibrary (and use its functions) at runtime; this happens most often
when you are writing some kind of plug-in or module architecture for your program.

In the C language, loading alibrary is very simple (calling dl open, dl symand dl cl ose is enough),
with C++ thisisabit more complicated. The difficulties of loading a C++ library dynamically are partially
dueto name mangling, and partially dueto the fact that the dl open API waswritten with Cin mind, thus
not offering a suitable way to load classes.

Before explaining how to load librariesin C++, let's better analyze the problem by looking at name man-
glingin moredetail. | recommend you read the explanation of name mangling, evenif you're not interested
in it because it will help you understanding why problems occur and how to solve them.

Name Mangling

In every C++ program (or library, or object file), al non-static functions are represented in the binary
file as symbols. These symbols are specia text strings that uniquely identify a function in the program,
library, or object file.

In C, the symbol name is the same as the function name: the symbol of st r cpy will best r cpy, and so
on. Thisis possible because in C no two non-static functions can have the same name.

Because C++ allows overloading (different functions with the same name but different arguments) and has
many features C does not — like classes, member functions, exception specifications— it is not possible
to simply use the function name as the symbol name. To solve that, C++ uses so-called name mangling,
which transforms the function name and all the necessary information (like the number and size of the
arguments) into some weird-looking string which only the compiler knows about. The mangled name of
f oo might look likef oo@%6", for example. Or it might not even contain the word “foo”.

One of the problems with name mangling isthat the C++ standard (currently [1S014882]) does not define
how names have to be mangled; thus every compiler mangles namesin its own way. Some compilers even
change their name mangling algorithm between different versions (notably g++ 2.x and 3.x). Even if you
worked out how your particular compiler mangles names (and would thus be able to load functions via
dl syn), thiswould most probably work with your compiler only, and might already be broken with the
next version.

Classes

Another problem with the dl open API isthe fact that it only supports loading functions. But in C++ a
library often exposes a class which you would like to use in your program. Obviously, to use that class
you need to create an instance of it, but that cannot be easily done.

The Solution

extern "C

C++ has a special keyword to declare afunction with C bindings: ext ern " C". A function declared as
extern " C" usesthe function name as symbol name, just as a C function. For that reason, only non-
member functions can be declared asext ern " C", and they cannot be overloaded.

C++ dlopen mini HOWTO

Although there are severe limitations, ext ern " C" functions are very useful because they can be dy-
namically loaded using dl open just like a C function.

This does not mean that functions qualified asext ern " C' cannot contain C++ code. Such a function
isafull-featured C++ function which can use C++ features and take any type of argument.

Loading Functions

In C++ functions are loaded just like in C, with dI sym The functions you want to load must be qualified
asextern "C' toavoid the symbol name being mangled.

Example 1. Loading a Function
main.cpp:

#i ncl ude <i ostreanp
#i ncl ude <dl fcn. h>

int main() {
usi ng std::cout;
using std::cerr;
cout << "C++ dl open deno\n\n";
/1 open the library
cout << "QOpening hello.so...\n";
voi d* handl e = dl open("./hello.so", RTLD LAZY);

if (!handle) {

cerr << "Cannot open library: " << dlerror() << '\n';
return 1,
}
/1 load the synmbo
cout << "Loading symbol hello...\n";
typedef void (*hello_t)();
[l reset errors
dlerror();
hello_t hello = (hello_t) dlsymhandle, "hello");
const char *dlsymerror = dlerror();
if (dlsymerror) {
cerr << "Cannot |oad synmbol "hello': " << dlsymerror <<
"\n';
dl cl ose(handl e);
return 1,

}

/] use it to do the cal cul ation
cout << "Calling hello...\n";
hel I o();

/1 close the library
cout << "dosing library...\n";

C++ dlopen mini HOWTO

dl cl ose(handl e);

}
hello.cpp:

#i ncl ude <i ostreanp

extern "C' void hello() {
std::cout << "hello" << '"\n';
}

The function hel | o isdefined in hel | 0. cppasextern "C';itisloaded in mai n. cpp with the
dl symcall. The function must be qualified asext ern " C' because otherwise we wouldn't know its
symbol name.

Warning

There are two different forms of theext ern " C" declaration: ext ern " C"' as used above,
andextern "C' { ...} withthe declarations between the braces. The first (inline) formis
a declaration with extern linkage and with C language linkage; the second only affects language
linkage. The following two declarations are thus equivalent:

extern "C'" int foo;

extern "C' void bar();

and

extern "C" {
extern int foo;
extern void bar();

}

Asthereisno difference between an ext er n and anon-ext er n function declaration, thisisno
problem aslong asyou are not declaring any variables. If you declare variables, keep in mind that

extern "C' int foo;
and
extern "C" {
int foo;
}
are not the same thing.

For further clarifications, refer to [1S014882], 7.5, with special attention to paragraph 7, or to
[STR2000Q], paragraph 9.2.4.

Before doing fancy things with extern variables, peruse the documents listed in the see also sec-
tion.

Loading Classes

Loading classesisahit moredifficult because we need aninstance of aclass, not just apointer to afunction.

C++ dlopen mini HOWTO

We cannot create the instance of the class using new because the class is not defined in the executable,
and because (under some circumstances) we don't even know its name.

The solution is achieved through polymorphism. We define abase, interface classwith virtual membersin
the executable, and a derived, implementation classin the module. Generally the interface classis abstract
(aclassisabstract if it has pure virtual functions).

As dynamic loading of classes is generally used for plug-ins — which must expose a clearly defined
interface — we would have had to define an interface and derived implementation classes anyway.

Next, whiletill inthe modul e, we define two additional hel per functions, known as classfactory functions.
One of these functions creates an instance of the class and returns apointer to it. The other function takesa
pointer to aclass created by the factory and destroysit. Thesetwo functionsarequalifiedasext ern " C".

To use the class from the modul e, load the two factory functions using dl sy mjust as we loaded the hello
function; then, we can create and destroy as many instances as we wish.

Example 2. Loading a Class
Here we use ageneric pol ygon class asinterface and the derived classt r i angl e asimplementation.
main.cpp:

#i ncl ude "pol ygon. hpp"
#i ncl ude <i ostreant
#i ncl ude <dl fcn. h>

int main() {
usi ng std::cout;
using std::cerr;

/1 load the triangle library
void* triangle = dlopen("./triangle.so", RTLD LAZY);
if ('triangle) {
cerr << "Cannot load library:
return 1,

<< dlerror() << '\n';

}

/] reset errors
dlerror();

/1 load the synbols
create t* create_triangle = (create_t*) dlsyn(triangle, "create");
const char* dlsymerror = dlerror();
if (dlsymerror) {
cerr << "Cannot | oad synbol create:
return 1,

<< dlsymerror << '\n';

}

destroy_t* destroy_triangle = (destroy_t*) dlsym(triangle, "destroy");

dlsymerror = dlerror();

if (dlsymerror) {
cerr << "Cannot | oad synbol destroy:
return 1,

<< dlsymerror << '\n';

C++ dlopen mini HOWTO

|/l create an instance of the class
pol ygon* poly = create_triangle();

/1 use the class
pol y->set _side_| ength(7);
cout << "The area is: " << poly->area() << '\n';

/1 destroy the class
destroy_triangl e(pol y);

/1 unload the triangle library
dl cl ose(triangle);

}
polygon.hpp:

#i f ndef POLYGON_HPP
#defi ne POLYGON_HPP

cl ass pol ygon {
pr ot ect ed:
doubl e side_length_;

publi c:

pol ygon()
: side_length (0) {}

virtual -~polygon() {}

voi d set_side_| engt h(doubl e side_length) {
side_length_ = side_Il ength;
}

virtual double area() const = 0;

b

/1 the types of the class factories
t ypedef pol ygon* create_t();
typedef void destroy_t(polygon*);

#endi f
triangle.cpp:

#i ncl ude "pol ygon. hpp"
#i ncl ude <cmat h>

class triangle : public polygon {
publi c:
virtual double area() const {
return side_length_ * side_length_ * sqrt(3) / 2;
}

C++ dlopen mini HOWTO

// the class factories

extern "C' polygon* create() {

}

return new triangl e;

extern "C' void destroy(polygon* p) {

}

del ete p;

There are afew things to note when loading classes:

* You must provide both a creation and a destruction function; you must not destroy the instances using

del et e from inside the executable, but always pass it back to the module. Thisis due to the fact that
in C++ the operators newand del et e may be overloaded; this would cause a non-matching newand
del et e to be caled, which could cause anything from nothing to memory leaks and segmentation
faults. The same istrueif different standard libraries are used to link the module and the executable.

The destructor of the interface class should be virtual in any case. There might be very rare caseswhere
that would not be necessary, but it is not worth the risk, because the additional overhead can generally
be ignored.

If your base class needs no destructor, definean empty (and vi r t ual) one anyway; otherwise you will
have problems sooner or later; | can guarantee you that. Y ou can read more about this problem in the
comp.lang.c++ FAQ at http://www.parashift.com/c++-fag-lite/, in section 20.

Source Code

Y ou can download all the source code presented in this howto as an archive: examples.tar.gz.

Frequently Asked Questions

1

I'm using Windows and | can't find thedl f cn. h header filel What's the problem?

Theproblemisthat Windowsdoesn't havethedl open API, andthusthereisnodl f cn. h header.
Thereisasimilar APl aroundtheLoadLi br ar y function, and most of what iswritten here applies
to it, too. Please refer to the Microsoft Devel oper Network Website [http://msdn.microsoft.com/]
for more information.

Isthere some kind of dl open-compatible wrapper for the Windows LoadLi brary API?
| don't know of any, and | don't think ther€e'll ever be one supporting al of dl open's options.

There are alternatives though: libtltdl (apart of libtool), which wraps avariety of different dynam-
ic loading APIs, among othersdl open and LoadLi br ary. Another one is the Dynamic Mod-
ule Loading functionality of GLib [http://devel oper.gnome.org/doc/API/glib/glib-dynamic-load-
ing-of-modules.html]. Y ou can use one of these to ensure better possible cross-platform compati-
bility. I've never used any of them, so | can't tell you how stable they are and whether they really
work.

You should also read section 4, “Dynamically Loaded (DL) Libraries’, of the Program Library
HOWTO [http://www.dwheel er.com/program-library] for more techniques to load libraries and
create classes independently of your platform.

http://www.parashift.com/c++-faq-lite/
examples.tar.gz
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://developer.gnome.org/doc/API/glib/glib-dynamic-loading-of-modules.html
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library

C++ dlopen mini HOWTO

See Also

* Thedl open(3) man page. It explains the purpose and the use of thedl open API.

e The article Dynamic Class Loading for C++ on Linux [http://www.linuxjournal .com/article.php?
sid=3687] by James Norton published on the Linux Journal [http://www.linuxjournal .com/].

* Your favorite C++ reference about ext ern " C', inheritance, virtual functions, new and del et e.
I recommend [STR2000].

. [1SO14882]

» The Program Library HOWTO [http://www.dwheeler.com/program-library], which tells you most
things you'll ever need about static, shared and dynamically loaded libraries and how to create them.
Highly recommended.

e The Linux GCC HOWTO [http://tldp.org/HOWTO/GCC-HOWTO/index.html] to learn more about
how to create libraries with GCC.

Bibliography
[1S014482] ISO/IEC 14482-1998 — The C++ Programming Language. Available as PDF and as printed book from

http://webstore.ansi.org/.

[STR2000] Bjarne Stroustrup The C++ Programming L anguage, Special Edition. ISBN 0-201-70073-5. Addison-Wes-
ley.

http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/article.php?sid=3687
http://www.linuxjournal.com/
http://www.linuxjournal.com/
http://www.dwheeler.com/program-library
http://www.dwheeler.com/program-library
http://tldp.org/HOWTO/GCC-HOWTO/index.html
http://tldp.org/HOWTO/GCC-HOWTO/index.html
http://webstore.ansi.org/

	C++ dlopen mini HOWTO
	Table of Contents
	Introduction
	Copyright and License
	Disclaimer
	Credits / Contributors
	Feedback
	Terms Used in this Document

	The Problem
	Name Mangling
	Classes

	The Solution
	extern "C"
	Loading Functions
	Loading Classes

	Source Code
	Frequently Asked Questions
	See Also
	Bibliography

