CVS Best Practices

Vivek Venugopalan <vi vekv at yahoo dot cone

Revision History

Revision 0.7 2005-10-15 v
A bunch of minor fixes as suggested by readers.
Revision 0.6 2002-09-10 v

Added content related to tagging and daily builds. Changed Linuxdoc URLs
to tldp. Fixed stale links and added other corrections suggested by readers.
Revision 0.5 2002-08-25 v
Fixed some more errors in the document and added refer-
ences to other CVS sources and some server side scripting

Revision 0.4 2002-03-10 v
Added new email address, Added an example flow to show how the practices help
Revision 0.3 2001-12-06 v
Grammatical errors cleanup
Revision 0.2 2001-11-27 v
Incorporated first round of feedback and some minor fixes
Revision 0.1 2001-11-20 v
Created

Table of Contents

g1 18 o [o PRSPPI
(©00)Y/1Te o100 1)o7 117 1 (o] o S
DR ol =110 1= PSP
NEW VEISIONS ..ttt e ettt e et e e e e e ettt e e e ettt e e e et e e e e ettt e e e ettt e e e eatn s eeeestnaeeeestnaaeaes
L@ 1=o [PSP UPPRTS
FEEADBEK ...t aaaa
FFOCUS ATEBS ... ettt ettt et e et et e et e e e e et e e e e e e e ees
L LS T 0o U oo P
WS 0 | I O S o 1T o | PP
(DY o o= S 0T | oo P
Keep SystemM ClOCKS IN SYNC ..u.iviiiiii e e e e e e eaa s
D0 not share the SANABOXciiiii e e
Stay in SyNC With the rEPOSITONYccvuiii e
Do not work outside the SANADOXvviiiiiiiiiiii e
Cleanup after COMPIELIONuuiiiii e e e e e e et e et e e e eenes
L000T= o T @ = o [PPSR
CV'S Sarver CONfIgUIBLIONuuiiiiieiiiee e e e e e e e e e e e e e et e e et e e et e e et e e et e e e eeanaes
(O3 S o=~ 3 o1 (o P
S VL= =T LIS] oL N
S AV g N o 1) = o) o PSPPSR
Branching and MEIGQINGc.uuieiiniiii et e e e e e e e e e e et e e et e e et e e et e e et e e eaneaeens
Assign ownership to Trunk and BranCheSo.uciiiiiiiiii e e e
Tag €ACKH TEIEASE .. i
Create a branch after aCh rel€aseooovviiiii
Make bug fixes to branChes ONlYocooiiiii i
Make patch releases from branches Onlycocooiiiii i
(O 7= 1010 LI 10T 0= o= 4 o] o P

CV S Best Practices

Merge branch with the trunk after releaseooceuiiiiiiiiii e, 10
SOFIWEANE BUITUS ... et e e et e e e et e e e et e e e e eaan s 10
Build Early and Build Often (BEBO)uuuiiiieiiiieiiiiisieseeeeeeeiiinaeseeeseeavsinananneeeaaeaannes 10
Automate build Process COMPIELEYuuiiiiiiiiii e e 10
All necessary files must be checked-in before buildcoooiiii i, 11
Ingtitutionalize CVS in the OrganiZationoeeiuiiiiiieiie e e e e 11
Implement Change Management PrOCESSc.uuviiiiiiiiii e r e e e e e aaas 11
Make CVS Usage part of ODJECHIVESc.vuiiiiiiiii e 11
ColleCt MELNCS ON CV S USAHE ...cvvvneiiieiiiieeii e ettt ettt e e e et e e e e e et e e et e et e e st e esanaeeannaees 11
BeSt PractiCeS IN ACHION ...eeii et e et e et e e et e e e s 11
T o)1 o] o 1 12
Development and DEIIVEIYiiiiiiiiii et e e e e e e e eas 12
100 Tox 11 o] o PP 13
A. GNU Free DocUmMENtation LICENSEcivuvii it e et e et e e et e e e et e e e eete e eeeees 13
0. Preamble .. .o 13
1. Applicability and DEfINItIONSocvuiiiiiieci e 14
VA= 40T 1] T @] oY/ T oo PPN 14
I @] oY oo T T @ 0=) Y/ 15
A, MOGITICAIONS ...evvieeeiii e e e et e et e e e et r e e e et neeeaaaneeeannns 15
5. ComMBINING DOCUMENESiiuiiii e et et e e e e e e e e e e et e et e e e et e e et e e et e e e aneeaneeeen 16
6. COllECtioNS Of DOCUMENLScceuvuieiiiiieee it e e e ettt e e et e e e et e e e et e e e e et e e e eaenes 17
7. Aggregation with Independent WOIKScoovuiiiiiiciie e 17
S I =01 o PP 17
LS 1= 0010 o PP 17
10. Future ReviSions Of thiS LICENSEiuvuuiiiiiiii et 18
How to use this License for your dOCUMENEScouviiiiieiiiieeie e e e e e e e e 18

Thisarticle explores some of the best practicesthat can be adopted while using CV S as the configuration management
tool in your software projects.

Introduction

Men have become the tools of their tools.
—Henry David Thoreau (1817-1862)

This article outlines some of the best practices that can be adopted when Concurrent Versions System is
used as the configuration management tool in your software project.

Concurrent Versions System (CVS) is an Open Source [http://www.opensource.org] configuration man-
agement tool that is now being looked at seriously by many commercial organizations as aviable aterna-
tive to other commercial Software configuration management tools.

This spotlight on CVS has led to the inevitable question of best practices for deploying CV S as the back-
bone SCM tool for large software development projects. Having answered this question many times ver-
bally as a bunch of “gotchas’ on CVS, it was time to put down on paper some of the best practices that
will work well for CV S based projects.

Note

This paper assumes that the reader is familiar with the fundamentals of software version control.
Including features like branching, merging, tagging (labelling) etc., offered by modern version
control tools such asCVS

http://www.opensource.org
http://www.opensource.org

CV S Best Practices

Further, This paper isnot an introduction to CV S and its usage. There are excellent articles avail-
able on the net for the same. This paper assumes that the reader is familiar with CVS commands
and is looking at deploying CVSin his or her organization. Some of the popular CVS related
links that can provide CV'S education are.

1. The Concurrent Versions System site [http://ximbiot.com/cvs/wiki/index.php?
titte=Main_Page] where current informaton about CVSis available. Including the CVS man-
ual [http://ximbiot.com/cvs/wiki/index.php?title=Cederqvist].

2. Karl Fogel's book, Open Source Development with CV'S [http://cvsbook.red-bean.com] is
available online.

Copyright Information

This document is Copyright © 2001 Vivek Venugopalan. Permission is granted to copy, distribute and/
or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license can be found in Appendix A, GNU Free Documentation
License.

This document may be reproduced and distributed in whole or in part, in any medium physical or elec-
tronic, aslong as this copyright noticeis retained on all copies. Commercial redistribution is allowed and
encouraged; however, the author would like to be notified of any such distributions.

All translations, derivative works, or aggregate works incorporating this document must be covered under
this copyright notice. That is, you may not produce a derivative work from this document and impose
additional restrictionson itsdistribution. Exceptionsto these rulesmay be granted under certain conditions;
please contact the author at the address given below.

In short, we wish to promote dissemination of this information through as many channels as possible.
However, we do wish to retain copyright on the document, and would like to be notified of any plans to
redistribute the same.

Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examples and other
content at your own risk. Asthisis anew edition of this document, there may be errors and inaccuracies
that may of course be damaging to your system. Proceed with caution, and although thisis highly unlikely,
the author(s) do not take any responsibility whatsoever.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of aterm in
this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

You are strongly recommended to take a backup of your system before major installation and backups
at regular intervals.

New Versions

This document isVersion: 0.7.
The latest version of this document can be obtained from (In the order of latest version availability)

1. My website [http://www.sanchivi.com/cm/cvs-bestpracti ces/index.html]

http://ximbiot.com/cvs/wiki/index.php?title=Main_Page
http://ximbiot.com/cvs/wiki/index.php?title=Main_Page
http://ximbiot.com/cvs/wiki/index.php?title=Main_Page
http://ximbiot.com/cvs/wiki/index.php?title=Cederqvist
http://ximbiot.com/cvs/wiki/index.php?title=Cederqvist
http://ximbiot.com/cvs/wiki/index.php?title=Cederqvist
http://cvsbook.red-bean.com
http://cvsbook.red-bean.com
http://www.sanchivi.com/cm/cvs-bestpractices/index.html
http://www.sanchivi.com/cm/cvs-bestpractices/index.html

CV S Best Practices

2. Thelinux documentation project [http://tldp.org/REF/CV S-BestPracti ceshtml/index.html]

Credits

Thelist of people who have provided information and correction for this paper in no particular order are.
1. Jens-Uwe Mager

2. Jorgen Grahn

3. Thomas S. Urban

4. Cam Mayor

5. Sdly Miller

6. Niels Jakob Darger

Feedback

Feedback is most certainly welcome for this document. Without your submissions and input, this docu-
ment wouldn't exist. Please send your additions, comments and criticismsto the following email address:
<vi vekv at yahoo dot conp.

Focus Areas

The focus areas for best practice are
1. GUI Tools
* UseGUI CVSclient
2. Developer Sandbox
» Keep System clocksin Sync
* Do not share the sandbox
 Stay in sync with the repository
+ Do not work outside the sandbox
* Cleanup after Completion
» Check-in Often
3. CVS Server Configuration
» CVSaccess control
* Server side scripting
* Server Notification

4. Branching and Merging

http://tldp.org/REF/CVS-BestPractices/html/index.html
http://tldp.org/REF/CVS-BestPractices/html/index.html

CV S Best Practices

» Assign ownership to Trunk and Branches

» Tageachrelease

* Create abranch after each release

» Make bug fixesto branches only

» Make patch releases from branches only
5. Change Propagation

e Merge branch with the trunk after release
6. Software Builds

 Build Early and Build Often

» Automate build Process completely

 All necessary files must be checked-in before build
7. Ingtitutionalize CV S in the Organization

* Implement Change Management Process

» Make CV S Usage part of Objectives

 Collect metrics on CV S usage

Using GUI Tools

The traditional interface available for CV S isthe command-line client. There has also been aslew of GUI
client applications that can “talk” to aCV S server. These GUI clients provide a*point and click” interface
to the CV S repository.

Use GUI CVS client

This paper recommends using such GUI clients during the initial deployment of CVSin an organization.

Developers typically use integrated development environments that have the CM tools integrated into
them. These tools minimize the learning for the devel opers about the intricacies of CV S usage and instead
allow them to be productive from day one. Developers who are accustomed to other CM tools will find
the CVS command-line interface daunting. The adoption and usage of CV'S can be improved by using
GUI toolsfor CVSclients.

GUI toolsfor CVSare available at http://cvsgui.sourceforge.net/. GUI interfaces are available for most of

the popular platforms (Windows, Mac and Linux). In addition, on the Windows platform thereis an SCC
extension that allows integration of CV S as the configuration control tool with popular IDE.

Developer Sandbox

The developer “sandbox” iswhere each devel oper keeps his or her working copy of the code base. InCV'S
thisisreferred to asthe working directory. Thisis where they build, test and debug the modules that they

http://cvsgui.sourceforge.net/

CV S Best Practices

are working on. A sandbox can also be the area where the staging build or the production build is done.
Changes made in the work area are checked into the CV S repository. In addition, changes made in the
repository by others have to be updated in the sandbox on aregular basis.

The best practices related to devel opers sandbox are:

Keep System clocks in Sync

CV S tracks change to source files by using the timestamp on the file. If each client system date and time
isnot in sync, thereis a definite possibility of CV'S getting confused. Thus system clocks must be kept in
sync by use of a central time server or similar mechanism.

CVSisdesigned from ground up to handle multiple timezones. Aslong as the host operating system has
been setup and configured correctly, CVSwill be able to track changes correctly.

Do not share the sandbox

Sandboxes have to be unique for each developer or purpose. They should not be used for multiple things
at the same time. A sandbox can be aworking area for a developer or the build area for the final release.
If such sandboxes are shared, then the owner of the sandbox will not be aware of the changes made to
the files resulting in confusion.

In CVS, the sandbox is created automatically when aworking copy is checked out for aCV S project using
the cvs checkout {pr oj ect-name} command.

In very large projects, it does not make sense for the developers to check-out the entire source into the
local sandbox. In such cases, they can take the binaries generated by the build team on aregular basis for
al those components of the application that is not changed by them and only check-out the parts that are
built by the developer.

For example, in aJavaproject, the build team can keep the results of their last successful build in astandard
location in the form of JAR files on the network file servers. Individual developers will use a standard
classpath setup that has the network drives mounted on standard paths. Thus, the devel opers will automat-
ically get the latest version of the files as required by them.

Stay in sync with the repository

To gain the benefits of working within a sandbox as mentioned above, the developer must keep his or her
sandbox in sync with the main repository. A regular cvs update with the appropriate tag or branch name
will ensure that the sandboxes are kept up to date.

Do not work outside the sandbox

The sandbox can be thought of as a controlled area within which CV'S can track for changes made to
the various source files. Files belonging to other developers will be automatically updated by CVSin the
developer's sandbox. Thus the devel oper who lives within the sandbox will stand to gain alot of benefits
of concurrent development.

Cleanup after Completion

Make surethat the sandbox is cleaned up after compl etion of work on thefiles. Cleanup can bedonein CVS
by using the cvs release command. This ensures that no old version of the files exists in the devel opment

CV S Best Practices

sandbox. As explained previously, pre-built binaries from the build team can be used to ensure that all
the parts of the application are available to the devel oper without the need for a complete compilation in
the sandbox.

Check-in Often

To help other devel opers keep their code in sync with your code, you must check-in your code often into
the CV Srepository. The best practice would be to check-in soon as a piece of code is completed, reviewed
and tested, check-in the changes with cvs commit to ensure that your changes are committed to the CVS
repository.

CV'S promotes concurrent development. Concurrent development is possible only if al the other devel-
opers are aware of the ongoing changes on a regular basis. This awareness can be termed as “situation
awareness’

Warning

One of the “bad” practices that commonly occur is the sharing of files between devel opers by
email. Thisworks against most of the best practices mentioned above. To share updates between
two developers, CV'S must be used as the communication medium. Thiswill ensure that CVSis
“aware” of the changes and can track them. Thus, audit trail can be established if necessary.

CVS Server Configuration

This section deals with best practices for CVS server side setup and configuration.

CVS access control

One of the important questions that | have been asked time and again is the ability to have access control
for files/folders/branches etc., within the CV S repository for various users. Unfortunately CV S does not
come with a built in Access control capability but it does support a rudimentary form of access control
through the readers/writers files in the CV SROOT repository. | have put together a set of scripts that use
the readers/iwriters files to provide a dightly useable version of access control. Thisis available at http://
cvspermissions.sarovar.org as an Open Source project. Feel free to use it and let me know how it works
for you.

Server side scripting

Server side scripting refersto the ability to make CV S server execute certain scripts when an event occurs.
A common script that helpsisto verify that all cvs commits contain acomment entered by the developer.
The processinvolves setting up the CVSROOT/ ver i f ynsg fileto run ascript when afileis checked-in.

#Set the verifynmsg file to fire a script
DEFAULT /usr/l ocal /bin/validate-cvs-1lo0g.sh

------ /usr/local/bin/validate-cvs-log.sh ---------

#!/ bi n/ sh

http://cvspermissions.sarovar.org
http://cvspermissions.sarovar.org

CV S Best Practices

#

val i date-cvs-1o0g.sh logfile

test that |og nessage has some characters in it
if ["cat $1 | wc -c ~ -It 10] ; then
echo "l og nmessage too short; please enter a description for the changes”

exit 1

el se

fi

exit O

Server Notification

The CV'S server can be configured to notify through e-mails in case of a commit happening. This can be
used to verify whether commits are occurring during the course of a daily/release build. If such commits
occur, based on the project policy, the commits can be ignored or the entire build automatically restarted.

Branching and Merging

Branching in CV S splits a project's development into separate, parallel histories. Changes made on one
branch do not affect the other branches. Branching can be used extensively to maintain multiple versions
of aproduct for providing support and new features.

Merging converges the branches back to the main trunk. In amerge, CV S cal cul ates the changes made on
the branch between the point where it diverged from the trunk and the branch's tip (its most recent state),
then applies those differences to the project at the tip of the trunk.

Assign ownership to Trunk and Branches

The main trunk of the source tree and the various branches should have a owner assigned who will be
responsible for.

1

Keep the list of configurable items for the branch or trunk.

The owner will be the maintainer of the contents list for the branch or trunk. This list should contain
the item name and a brief description about theitem. Thislistisessential since new artifacts are always
added to or removed from the repository on an ongoing basis. This list will be able to track the new
additions/del etions to the repository for the respective branch.

. Establish aworking policy for the branch or trunk.

The owner will establish policiesfor check-in and check-out. The policy will define when the code can
be checked in (after coding or after review etc.,). Who is responsible to merge changes on the same file
and resolve conflicts (the author or the person who recently changed thefile).

. ldentify and document policy deviations

Policies once established tend to have exceptions. The owner will be responsible for identifying the
workaround and tracking/documenting the same for future use.

. Responsible for merge with the trunk

The branch owner will be responsible for ensuring that the changes in the branch can be successfully
merged with the main trunk at a reasonable point in time.

CV S Best Practices

Tag each release

As part of the release process, the entire code base must be tagged with an identifier that can help in
uniquely identifying the release. A tag gives a label to the collection of revisions represented by one
developer'sworking copy (usually, that working copy is completely up to date so the tag name is attached
to the “latest and greatest” revisions in the repository).

The identifier for the tag should provide enough information to identify the release at any point intimein
the future. One suggested tag identifier is of the form.

rel ease_{major version # _{ minor version #}

Note

As one reader pointed out to me, a good practice here is to tag the release first. Checkout the
entire codebase using the tag, and then proceed to go through abuild / deploy / test process before
making the actual release. This will absolutely ensure that what “leaves the door ” is a verified
and tested codebase.

Create a branch after each release

After each software release, once the CV S repository is tagged, a branch has to be immediately created.
This branch will serve as the bug fix baseline for that release. This branch is created only if the release is
not a bug fix or patch release in the first place. Patches that have to be made for this release at any point
in time in the future will be developed on this branch. The main trunk will be used for ongoing product
development.

With this arrangement, the changes in the code for the ongoing devel opment will be on the main trunk and
the branch will provide a separate partition for hot fixes and bug fix releases.

The identifier for the branch name can be of the form.

rel ease_{magor version#}_{minor version# _pat ches

Make bug fixes to branches only

This practice extends from the previous practice of creating a separate branch after amagjor release. The
branch will serve asthe code base for all bug fixes and patch rel ease that have to be made. Thus, thereisa
separate repository “ sandbox” wherethe hot fixes and patches can be devel oped apart from the mainstream
development.

This practice also ensures that bug fixes done to previous releases do not mysteriously affect the main-
stream version. In addition, new features added to the mainstream version do not creep into the patch
release accidentally.

Make patch releases from branches only

Since al the bug fixes for a given release are done on its corresponding branch, the patch releases are
made from the branch. This ensures that there is no confusion on the feature set that is released as part
of the patch release.

After the patch release is made, the branch has to be tagged using the release tagging practice (see Tag
each release).

CV S Best Practices

Change Propagation

Change propagation practices explore how changes made to one version of the application are migrated
to other living versions of the application.

Merge branch with the trunk after release

After each release from a branch, the changes made to the branch should be merged with the trunk. This
ensures that al the bug fixes made to the patch release are properly incorporated into future releases of
the application.

This merge could potentially be time consuming depending on the amount of changes made to the trunk
and the branch being merged. In fact, it will probably result in alot of conflictsin CV Sresulting in manual
merges. After the merge, the trunk code base must be tested to verify that the application is in proper
working order. This must be kept in mind while preparing the project schedule.

In the case of changes occurring on branches for along period, these changes can be merged to the main
branch on aregular basis even before the release is made. The frequency of mergeis done based on certain
logical points in the branch's evolution. To ensure that duplicate merging does not occur, the following
practice can be adopted.

In addition to the branch tag, atag called { branch_name} MERGED should be created. Thisis initially
at the same level as the last release tag for the branch. This tag is then “moved” after each intermediate
merge by using the -F option. This eliminates duplicate merging issues during intermediate merges.

Software Builds

Thissection deal swith the best practicesfor software builds. Build isthe process of creating the application
binaries for a software release. They are donein a periodic manner by the build teams to provide baseline
binaries for daily work.

Build Early and Build Often (BEBO)

A variation of thisadage has been around in the Open Source community called "Release Early and Release
Often" for quite some time albeit for a different reason. BEBO hel ps a development team identify issues
that can arise from checking in the wrong files. BEBO will address integration issues at the application
level that might have slipped passed individual developer builds. It will also improve the team morale
when they see aworking version of the application.

Builds must be done on aregular basis. There should be a dedicated resource(s) assigned to do the same.
The entire project team must be trained to view the daily build as an important activity and not as achore.
Builds must be completed without any failures on aregular basis. Build failures must be arare event and
should be treated with utmost seriousness. The project team should ensure that successful builds are top
priority on their agenda. The seriousness can be emphasised by setting up apenalty for breaking the build.

Each build can be tagged in CV S using a standard naming convention. This can help devel opers checkout
aworking version of the entire system from daily builds for local devel opment.

Automate build Process completely

Another key practice for software builds is to automate the build process completely. The automation
processmust alsoinclude automatic retrieval of theright sourcefilesfromthe CV Srepository. Thisensures
that the build processis completely repeatable and consistent. In addition, the chances of abuild with the
wrong version of the application source files are reduced to alarge degree.

10

CV S Best Practices

By automating the build process, the task of building often becomes less burdensome.

All necessary files must be checked-in before build

This adage sounds trivial at first but this problem is very common even with experienced devel opment
teams due to oversight. The problem of oversight cannot be easily addressed since the onus is on the
individual developer to ensure that his or her file has been checked in. This practice should be drummed
into the team in the form of training and pre-build announcementsto ensure that the right version of source
code isavailablein the repository.

Automated build process as explained above will help in catching this problem to a certain degree since
they will automatically take the source code from the CV Srepository and perform the software build. Any
missed items will surface during the build process itself (makefiles etc.,) or during the regression testing
of the product (older version of the file checked in).

A penalty based system can be setup to handle wrong check-in. Having a kitty for a post project party to
which each person who makes a wrong check-in will contribute a fixed amount will act a good penalty
system.

Institutionalize CVS in the Organization

Here we will look at the best practices for institutionalizing CV S usage in the organi zation.

Implement Change Management Process

All organizations must implement a good Change management process (CMP). A good CMP will define
how changes are received, recorded, tracked, executed and delivered. CV'S provides version control for
your project. Change management addresses the “bigger picture” of how enhancements and bugs are re-
ceived, tracked and closed. CVSwill play asmaller but a very important part in this entire picture. With
aformal change management process in place in the organization, tools such as CVS will be looked at as
aiding this process instead of acting as a general development overhead.

Change management is quite a vast topic that cannot be done justice here. Please look up other sources
of information on change management.

Make CVS Usage part of Objectives

Toingtitutionalize CV'S, it can be made as part of the performance objectivesfor the developer touse CV'S
in the project. In addition, it can aso be made as part of the objective for the project manager to deploy
CVSinhisor her project.

Compliance of this can then be reviewed as part of the appraisal cycle for the employee.

Collect metrics on CVS usage

CV S usage metrics can be collected in terms of percentage of deployment in the organization, project size
handled etc., This information will spur other line managers and program managers to look at CVSasa
tool that will aid them in their daily operations.

Best Practices in Action

The best way to explain the need for these best practicesis by putting together an example of areal world
project scenario and show how exactly will these best practices fit into the “bigger picture’. Also, alot

11

CV S Best Practices

of readers have told me that the sections on Branching and Merging and Change Propagation will require
examplesfor better explanation. Listening to the readersisaGood Thing so | have put together aparticular
project scenario and then create a series of events to show how the best practices, if followed, would help
is making operations smocther.

Inception

Consider a software project where version 1.0 has just been put into production and everyone is done
celebrating. The next step isto start working on the new features of the subsequent release. Also, the users
of the system have started to use it full-time and bug reports of various levels have started to comeiin.

Before jumping into new enhancements or bug fixes, the best practices for Branching and Merging should
be followed. Few of the important practices are Tag each release and Create a branch after each release.
These practices will effectively established two “development environments”, one for regular enhance-
ments and the other for bug fixes and minor enhancements on the last release.

L et us assume that the release was tagged as

release 1 0

Then the branch was created with the branch name

rel ease_1 0 patches

Development and Delivery

Now, we are ready for business. Let us examine the bug fixes and enhancements track. Assume that there
are three bugs of which two are of ahigh priority that should be fixed right away (possibly within aweek)
and the third can be delivered after some time (say after 4 weeks). In the middle of this schedule thereis
aregular release scheduled in three weeks. Considering that we have a busy month ahead, let us see how
exactly we can use the Best practices to ease the days ahead.

The timeline for the various release in the next month looks like this.

Fi x Enhancenment Fi x
Today Rel ease 1 Rel ease Rel ease 2
| | | |
Time -->

We have two teams, one working on the bug fix branch and another team working on the features for the
next release on the main trunk. These teams must make sure that they start out with the right version in
their sandbox.

1. The bug fix team will check out using the command line
cvscheckout -R -r release 1 0 _patches{project name}

2. Theteam that is working on the next release will use the command line
cvs checkout -R {project name}

As soon as the bug fix team compl etes the two top priority bugs, they will update, verify asuccessful build
and commit their changes to the bug fix branch using the command line

12

CV S Best Practices

cvsupdate-R -r release 1 0 patches{module name}

Theteam should perform abuild at this point to verify that the update did not break any code on the branch.
Once the build is successful, the branch should be committed back into the repository.

cvscommit -R -r release 1 0 patches{module name}

Build Early and Build Often : On adaily basis, each developer will check in code to CVS and to ensure
sanity of code, daily builds on the bug fixed branch will be undertaken by checking out from CVSon a
clean environment and completely rebuilt. These daily builds can be tagged in CV S using the following
naming convention

build 1 1 yyyymmdd : for the branch
build 2 0 yyyymmdd : for the trunk

The regular process of build-test-fix is followed to make a version ready for delivery. The tag will help
developers checkout aworking copy of the latest build as and when necessary.

When the source code is rel eased to the outside world, two practices have to be followed.

1. Tag each release : This ensures that the bug fix release is tagged correctly and so can be traced out at
alater point in time if necessary.

2. Merge branch with the trunk after release : This ensures that the bug fix is merged back into the main
trunk ensuring that all future releasesis atruly cumulative delivery.

Conclusion

These best practices are meant to help software teams get ahead start on using CV Sfor their devel opment.
The ideas presented here have to be constantly reviewed and evolved. | would like this to be a growing
and evolving document. Please send your comments and ideasto <vi vekv at yahoo dot conw

A. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyoneis permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

Preamble

The purpose of thisLicenseisto make amanual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistributeit, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
away to get credit for their work, while not being considered responsible for modifications made by others.

ThisLicenseisakind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

13

CV S Best Practices

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purposeis instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The "Document”, below, refers to any such
manual or work. Any member of the publicisalicensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document's overall sub-
ject (or to related matters) and contains nothing that could fall directly within that overall subject. (For
example, if the Document isin part atextbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
meatters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic trandation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readersis not Transparent. A copy that is not "Transparent” is called "Opagque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opague formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the

14

CV S Best Practices

copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must also follow the conditionsin section 3.

Y ou may aso lend copies, under the same conditions stated above, and you may publicly display copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copiesin coversthat carry, clearly and legibly, al these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. Y ou may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(asmany asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either in-
clude amachine-readabl e Transparent copy aong with each Opaque copy, or state in or with each Opague
copy apublicly-accessible computer-network location containing acomplete Transparent copy of the Doc-
ument, free of added material, which the general network-using public has access to download anony-
moudly at no charge using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaqgue copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them achanceto provide you with an updated version of the Document.

Modifications

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at |east five of the principal authors of the Docu-
ment (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve al the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

15

CV S Best Practices

G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preservethe section entitled "History", and itstitle, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating thetitle, year, authors, and publisher of the Doc-
ument as given on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. Y ou may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. Inany section entitled " Acknowledgements' or "Dedications’, preserve the section'stitle, and preserve
inthe section all the substance and tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve al the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section entitled "Endorsements’. Such a section may not be included in the Modified Ver-
sion.

N. Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements’, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

Combining Documents

Y ou may combine the Document with other documents released under this License, under the terms de-
fined in section 4 above for modified versions, provided that you include in the combination al of the
Invariant Sections of al of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

16

CV S Best Practices

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but dif-
ferent contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else aunique number. Make the same
adjustment to the section titlesin thelist of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled " Acknowledgements”, and
any sections entitled "Dedications". Y ou must delete all sections entitled "Endorsements.”

Collections of Documents

Y ou may make a collection consisting of the Document and other documents rel eased under this License,
and replacetheindividual copiesof thisLicenseinthevariousdocumentswith asingle copy that isincluded
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documentsin all other respects.

Y ou may extract asingle document from such acollection, and distributeit individually under thisLicense,
provided you insert acopy of thisLicenseinto the extracted document, and follow thisLicensein al other
respects regarding verbatim copying of that document.

Aggregation with Independent Works

A compilation of the Document or its derivativeswith other separate and independent documents or works,
in or on avolume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation
iscalled an "aggregate”, and this License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

Translation

Trandlation is considered akind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. Y ou may include a trandation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
trandlation and the original English version of this License, the original English version will prevail.

Termination

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

17

CV S Best Practices

Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from timeto time. Such new versionswill be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyl eft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.1 or any later version published by the Free Software Foundation; with the Invari-
ant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST. A copy of the license isincluded in the section
entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts
being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend rel easing these examples
in parallel under your choice of free software license, such asthe GNU General Public License, to permit
their usein free software.

18

http://www.gnu.org/copyleft/

	CVS Best Practices
	Table of Contents
	Introduction
	Copyright Information
	Disclaimer
	New Versions
	Credits
	Feedback

	Focus Areas
	Using GUI Tools
	Use GUI CVS client

	Developer Sandbox
	Keep System clocks in Sync
	Do not share the sandbox
	Stay in sync with the repository
	Do not work outside the sandbox
	Cleanup after Completion
	Check-in Often

	CVS Server Configuration
	CVS access control
	Server side scripting
	Server Notification

	Branching and Merging
	Assign ownership to Trunk and Branches
	Tag each release
	Create a branch after each release
	Make bug fixes to branches only
	Make patch releases from branches only

	Change Propagation
	Merge branch with the trunk after release

	Software Builds
	Build Early and Build Often (BEBO)
	Automate build Process completely
	All necessary files must be checked-in before build

	Institutionalize CVS in the Organization
	Implement Change Management Process
	Make CVS Usage part of Objectives
	Collect metrics on CVS usage

	Best Practices in Action
	Inception
	Development and Delivery

	Conclusion
	A. GNU Free Documentation License
	Preamble
	Applicability and Definitions
	Verbatim Copying
	Copying in Quantity
	Modifications
	Combining Documents
	Collections of Documents
	Aggregation with Independent Works
	Translation
	Termination
	Future Revisions of this License
	How to use this License for your documents

