
Upgrading Your linux Distribution
mini-HOWTO

Greg Louis
glouis@dynamicro.on.ca

Copyright © 1996, 2002 Dynamicro Consulting Limited
v1.2, 9 March 2002

Hints and tips on upgrading from one linux distribution to another. This is version 1.2,
2002-03-09.

1. IMPORTANT!!! Disclaimer and Copyright

The procedure to which this document attempts to be a guide is inherently dangerous to the programs
and data stored in your computer. You carry out any such procedure entirely at your own risk. The steps
described in this document worked for the author; there is no guarantee that they will work for you, nor
that you can attempt to follow them without serious damage to your computer’s programs and/or data.
You are entirely on your own in any use you may make of the information presented herein, and the
author shall not be liable in any way whatsoever for any damage or inconvenience of any kind that you
may suffer in so doing.

This document is copyright © 1996, 2000 Dynamicro Consulting Limited, and is released under the
terms of the GNU General Public License. This basically means that you may copy and modify it at will,
but may not prevent others from doing likewise.

Comments and questions may be directed to the author. Especially welcome, for use in future revisions,
are accounts of successful upgrades of complex systems.

1



Upgrading Your linux Distribution mini-HOWTO

2. Changes since version 1.1

• Converted to docbook

• Corrected some obsolete information

• Added this history section

• Added Zoltán Hidvégi’s suggestion re mtime and ctime. Thanks, Zoltán!

• Added an Acknowledgements section

3. Introduction

3.1. How to slay and reincarnate your linux box!

The purpose of this document is to offer tips to help you through the destruction and reinstallation of a
linux system. It’s not a foolproof cookbook by any means, but I hope it will serve as some indication of
what you need to think about, and of the order in which to do things. It would have been a help to me, if
someone else had written something like this before I did my first upgrade; so I hope it will be a help to
you, if you have a linux machine to rebuild.

Don’t take it as gospel, though: your mileage will almost certainly vary. Even the directory names in this
document may be different from the ones you need to use; some people have /usr/home instead of /home,
for example; others call it /u, and some (delicate shudder :) even put all their users directly under /usr
itself! I can’t be specific about your system, so I’ve just used the names the way they are in mine.

You’ll also notice that I use Slackware distributions, and that I assume you’ve enough RAM and hard
disk space to install linux kernel source and build your own kernel. If your system is different, some of
my recommendations won’t apply; but I hope you’ll still find the general outline to be of assistance in
your rebuild project.

3.2. Why would anyone want to do that?

Good question! If it can possibly be avoided, don’t do it! (That’s the single most important
recommendation in this whole guide!!!) When this guide was first written, not many people had hard
disks big enough to accomodate two whole Linux installations; these days, that’s by no means
uncommon. If you possibly can, build your new system in a separate partition (or group of partitions),
keeping the old one intact till you’re satisfied that the new one is just the way you want it. If you can
avoid destroying the old system to make room for the new, by all means avoid it! But there are times
when you may have no choice.

2



Upgrading Your linux Distribution mini-HOWTO

(These examples are a bit dated, but they serve to illustrate my point:)

For example, I installed a 4Gb hard disk and then found out that Slackware 2.0 vintage linux didn’t know
a hard disk could have more than 2Gb, and it got horribly confused. So I had to upgrade to the
then-current Slackware 2.3. That upgrade was a gruelling experience, and it’s part of the reason I’m
writing these notes. I did just about everything wrong, and only good luck and the fact that I had another
running linux box beside me saved me from disaster.

As another example, I found that I just couldn’t succeed in building a working a.out linux kernel in the
1.3 series, using an out-of-the-box Slackware 2.3 installation (another machine, not the one I botched
before). I took the plunge, bought Slackware 3.0 on CDROM and converted to ELF. This time the
reinstallation went better, thanks in part to the previous bitter experience, and it served as the source of
most of the ideas I’m offering you here.

3.3. Do you have to “destroy and reinstall?”

See above. If you can build your new system in otherwise empty disk space, do it! For the rest of this
document, however, I’ll assume that this is one of those times when that option isn’t available; you either
have to reinstall "in place," over top of the existing system, or you have to bite the bullet and rebuild
from scratch.

The latter is safer, oddly enough. If you install over top of an existing linux system, chances are you’ll
have a mixture of old and new binaries, old and new configuration files, and generally a mess to try to
administer. Wiping the system clean, and then putting back only what you know you need, is a drastic
but effective way to get a clean result. (Of course we’re talking about installing a whole new linux
distribution here, not about upgrading one or two packages! The best way to avoid having to do a full
reinstallation is, precisely, to keep the individual bits -- especially gcc and its libraries, and binutils --
current. If the stuff you use is reasonably up-to-date, and you can keep it so by bringing in, and if need be
compiling, new code from time to time, then there’s no need for a mass upgrade.)

3.4. How long will it take?

Depends, of course, on how complex your system is. But I figure that, for the successful upgrade (the
other one? -- don’t ask! :) I spent about ten hours making backups, six hours rebuilding the system to the
point where I could enable logins, and another half day or thereabouts restoring the less-crucial stuff. As
time passes I keep discovering little things that still aren’t exactly as I want them -- I fix these as they’re
encountered -- but in the main, twenty hours’ work should suffice for a reasonably complex rebuilding
job. Maybe less if you’re reinstalling from hard disk (I used CDROM) or more if you need to install from
floppies. Maybe less if you’ve got a fast Pentium, more if it’s a 386. You get the idea.

Those were the bad old days. Now, with faster disks and faster machines and CD writers, things go
better. My notebook was stolen in December, 2002, and when the new one came, I was up and pretty

3



Upgrading Your linux Distribution mini-HOWTO

near complete -- despite having lost the old system without the chance to save the latest changes -- after
about seven hours of effort.

So much for the introduction. Here’s how to set about it, once you’ve decided it must be done. Arm
yourself with fortitude and Jolt or whatever, and:

4. Write down everything you do.

It’s extremely valuable to have a record of what you’ve done in the process of preparing for, and carrying
out, the changeover. Especially important is a list of the backups you’ll be making in preparation for the
destruction of your existing system.

5. Make a full backup of the existing system.

Generally speaking, big backups tend to be written on media that are sequentially accessed. That being
so, you won’t want to use this complete backup for restoring significant numbers of files; it’s got too
many files on it that you don’t want. It’s better to create small backups of individual segments that you
know you’re going to restore in their entirety. I’ll list a bunch of examples later.

Why then should you start with a full backup? Two basic reasons: first, in the event of a catastrophic
failure installing the new system, you’ll have a way to get back to the starting point with minimum pain.
Second, no matter how carefully you prepare for the new installation, there is a very large chance that
one or two important files will be overlooked. In that case the clumsiness of restoring those one or two
files from the full backup set will be preferable to the inconvenience of doing without them.

To save time and space, if you’ve still got the distribution medium for your old linux version, you might
want to back up only those files the mtime or ctime of which is more recent than the date of the original
installation.

6. Back up /etc and its subdirectories on one or more
floppies.

This is the other extreme: you won’t be restoring these files (for the most part, anyway); you’ll be
comparing them with the new ones that get created during installation. Why? Because the new ones may
have data that the old ones didn’t, or may express the old data in new ways. Changes in protocols,
addition of new tools, or implementation of new features in existing tools may all dictate changes in the
formats of the configuration files and startup scripts that the /etc tree contains, and you’ll very likely have

4



Upgrading Your linux Distribution mini-HOWTO

to edit your old data into these files so as to preserve the new formats and take advantage of the
improvements.

7. Make separate backups of each group of files you
want to preserve.

This is the most variable part of the job, and all I can really do to help is to describe what I did in my
system, in the hope that it will serve as a rough guide. Basically, you want to look at every directory that
contains any

• files that aren’t part of your standard linux installation, or

• files that are actually newer than the ones you’ll install when you do your new linux installation.

and separate out only those files that you want to carry over.

(Another possible strategy is to back up all files with mtime or ctime more recent than the day of the
previous linux installation, as mentioned above, and then restore from that. If you do that, you have to
take into account that the new linux distribution may contain versions of some files that are newer still
than the ones you saved.)

In my case, I ended up making a .tgz file on the backup medium for each of

• /usr/lib/rn

• /usr/lib/smail

• /usr/lib/trn (the rest of /usr/lib would be reinstalled)

• /usr/local/src

• /usr/local/bin

• /usr/local/lib

• /usr/local/lpfont

• /usr/local/man

• /usr/local/sbin

• /usr/local/thot (there were other /usr/local files I didn’t need)

• /usr/openwin

• /usr/src/lilo-17 (because my new Slackware still had version 16)

• /usr/src/linux-1.2.13 (because I’d done some customizing)

5



Upgrading Your linux Distribution mini-HOWTO

• /usr/X11R6/lib/X11/app-defaults

• /usr/X11R6/lib/X11/initrc (the rest of Xfree86 was to be reinstalled)

• /var/named

• /var/openwin

• /var/texfonts

My machine was relatively easy in that there were no spool files to worry about. I don’t run a news spool
on this box, and since there are only two users, it was easiest just to get all the mail read before shutting
down. Otherwise, /var/spool directories would have had to be backed up at the last minute. (And, of
course, the news library and site directories!)

8. Prepare root and boot floppies for the new installation.

If you’re lucky, your new package will include a bootable CD and this step won’t be needed. If you
haven’t got a CDROM drive, or can’t boot from it, details of how to make the floppies will be found in
the installation guide for your new distribution.

9. Format floppies for the temporary kernel and the final
build.

You’ll need two, one floppy for each.

After all that’s done, you’re ready for the Big Moment. The next step removes the system from
production.

10. Inhibit logins and back up the /root and /home trees.

This is the last thing to be done on the old system before you destroy it, so as to carry forward the most
current user and root information. To inhibit logins, just echo "getting ready for upgrade" >/etc/nologin
(as root, of course).

6



Upgrading Your linux Distribution mini-HOWTO

11. Boot from the new installation’s boot and root
floppies.

Or, if you have that capability, boot the installation CD itself.

12. Delete the linux partitions with fdisk and recreate
them.

The installation guide will explain how to set about doing this, which will destroy the old system. From
now on you’re dependent on the quality of the backups you made in the earlier steps! You have been
warned!

13. Run the new linux installation.

There are already several good documents describing how to do this, so I’m not going into any detail.
Continue from here when the new system can boot from its hard disk.

Along the way, be sure to make a floppy that you can boot as well, since the kernel that the linux setup
installs has to be replaced and accidents can happen during that process. Be sure to install the
development packages and the kernel source.

14. Restore configuration data to the /etc directory and
subdirectories.

As described above, you can’t just copy all of the old files back into /etc and expect things to work
properly afterward. Some files you can do that with; for example, /etc/XF86Config (as long as you’re
using the same version of XFree86 -- and the same video hardware -- in the new installation as you did in
the old). For the most part, though, it’s best to use diff to compare the old and new files before doing any
copying. Watch out especially for significant changes in the files in /etc/rc.d and friends, which may
require you to reestablish your old configuration by hand editing, instead of by copying the old rc scripts
from your backup. Once it’s all done, reboot.

15. Configure and rebuild the linux kernel.

Even if you don’t absolutely have to do this in order to get a kernel that supports your hardware, it’s
worth doing it in order to get a kernel that doesn’t contain masses of drivers for stuff your machine

7



Upgrading Your linux Distribution mini-HOWTO

doesn’t have -- and even more so, in order to get a good understanding of how your kernel configuration
options affect the behaviour of your system! As linux grows, the ability of the distribution vendors to
configure a one-size-fits-all kernel has become very limited. For details on how it’s done, see the Kernel
HOWTO; it looks complicated at first, but it’s not rocket science; just take it a step at a time.

Install the rebuilt kernel on a floppy at first; once that boots ok, install on the hard disk, run lilo if you’re
using it, and reboot.

16. Restore the stuff from the backups you made earlier.

Some of the binaries may need to be reinstalled from the source directories; I had to do that with lilo, for
example, since my version was newer than the one on the Slackware installation and I hadn’t bothered to
save the binary from /sbin. You’ll want to check through your restored programs and confirm the
existence and correctness of configuration files, libraries and so on. In some cases, you may have to
restore things in a specific order; you did make notes during backup, didn’t you? ;-)

17. Review security.

(Sigh...) When I wrote this, this step was important but not crucial; the Internet was a friendlier place
even in 1996 than it is today. Now, if your machine has Internet access, this step is utterly vital, and there
are whole books devoted to getting it right; I can do nothing more here than offer a few very basic
pointers:

Check file permissions and directory permissions to be sure that access is neither too restricted nor too
easy. I find that Slackware tends to lean toward a more open environment than I like, so I go around
changing 755’s to 711’s for binaries in the .../bin directories and stuff like that. Or even 700’s in the
.../sbin ones. Especial care is needed if you’ve carried over ftp, telnet or web servers; but then, if you
were running those, you probably thought of that already. :)

Look at /etc/inetd.conf or /etc/xinetd.conf and make sure you’re not running any Internet services you
don’t need to. Also go through the boot scripts in /etc/rc.d and friends for the same purpose. Check your
firewall rules if your box is an Internet gateway or has Internet access.

18. Enable logins.

You’re up and running. Over the next little while, there’ll probably be details to clean up; but the bulk of
the work is done. Enjoy!

8



Upgrading Your linux Distribution mini-HOWTO

19. Sorry, but once again: USE THIS INFORMATION AT
YOUR OWN RISK!

(See the disclaimer at the start of this document.)

20. Acknowledgements

Thanks for contributing to the content of this mini-HOWTO are gratefully tendered to Zoltán Hidvégi;
and for motivating me to bring it a bit closer to modern practice, to Steve Sanfratello, author of the
rpmupgrade-HOWTO.

9


	1. IMPORTANT!!! Disclaimer and Copyright
	2. Changes since version 1.1
	3. Introduction
	3.1. How to slay and reincarnate your linux box!
	3.2. Why would anyone want to do that?
	3.3. Do you have to ``destroy and reinstall?''
	3.4. How long will it take?

	4. Write down everything you do.
	5. Make a full backup of the existing system.
	6. Back up /etc and its subdirectories on one or more floppies.
	7. Make separate backups of each group of files you want to preserve.
	8. Prepare root and boot floppies for the new installation.
	9. Format floppies for the temporary kernel and the final build.
	10. Inhibit logins and back up the /root and /home trees.
	11. Boot from the new installation's boot and root floppies.
	12. Delete the linux partitions with fdisk and recreate them.
	13. Run the new linux installation.
	14. Restore configuration data to the /etc directory and subdirectories.
	15. Configure and rebuild the linux kernel.
	16. Restore the stuff from the backups you made earlier.
	17. Review security.
	18. Enable logins.
	19. Sorry, but once again: USE THIS INFORMATION AT YOUR OWN RISK!
	20. Acknowledgements

