Bash Guide for Beginners

Machtelt Garrels, Garrels BVBA
<tille wants no spam _at_garrels dot be>

Bash Guide for Beginners
by Machtelt Garrels

Table of Contents

Fg11goTo (¥ oi [oo H PP PP TPPPPT PRSPPI X
WHY ThiS QUIGE? ...ttt ettt ettt e e e e enaans X
WHho should read thiS DOOK?iiiiiie e X
New versions, tranglations and avail@bilityoooiiiiiiiiiiii e Xi
REVISION HISLOMY ...ttt e et e e Xi
CONEIIDULIONS ...ttt et e e ettt e et e e e et e e e e ena e Xii
FEEADBCK ...t een Xii
Copyright INFOFMEEIONceevue ittt e et e e et e e e e et e e e enbe e eeees Xii
What dO YOU NEEA? ...t ettt Xiii
Conventions used in thiS dOCUMENTccouuiiiiiii e e Xiii
Organization of thiS AOCUMENTcooutiiiiiii e Xiv

1. Bash @nd Bash SCrIPLS .. .cceeuuiiiiii ettt et 1
ComMON SNEIT PIOGIAIMISeeiti ettt e e ettt e et e e et e e e e eaa s 1

General Shell FUNCLIONScooiiiiei e 1
ShEIL TYPES <. 1
Advantages of the Bourne Again SHEIlcoouuiiiiiiii e 2
Bash iSthe GNU Sl ... oo 2
Features only found in Dashcoouiiii 2
EXECULING COMMEAINGSeeetieeeeit ettt ettt ettt e e e et e e et et e e e e et e e e eeae e eeenes 7
€1 11 o | TSP TPP PP PUPPPTRUUPIN 7
Shell BUITE-IN COMMENGSoiiiii e 7
Executing programs frOM @ SCHPLceuuuiiiiiiie ettt e e e e e eees 8
BUIIAING DIOCKS ...t 8
Shell BUITAING DIOCKS ... e 8
DevelOPIiNg GO0 SCIIPES ...vuueeiitiee ettt ettt ettt e e et e et e e e et e e eeba e eeees 11
Properties Of 900U SCIPLSvuueieiiiie ittt 11
R U o (U TP PTPPTI 11
LI 10011 0T0] oo | PP PPPPTTR 11
A WOrd 0N Order and [OGICuuniieiiiiei e 12
An example Bash script: mySystem.sh ... 12
EX@MPIE INIT SCIIPL ..eeeeie e e 14
SUMIMIBIY ettt et e e et et r et et e e e e et r et e e e e e et n e e e e ena s 15
S o = ST PP UPPPTTRPPPPIN 15
2. Writing and debugging SCIPESuueeeiiiiee ettt ettt et eeeae s 17
Creating and rUNNING @ SCHPL ...ceevtnieeiii et e e e et eeenna s 17
WItING @NA NAIMING «.eeveeeiie ettt e et 17
S o g1 o0 R o LT PSPPI 18
EXECULING The SCIIPL ...eeeeie et 19
SCHIPL DASICS ...ttt et e 20
Which shell Will run the SCHpt?coooiiii e 20
AdAiNG COMIMENESitieeiet ettt e et e e e et e e e ebe e e eeniaeeees 21
Debugging Bash SCIHPLS ...cevuneiiiiii et et e et e et e e e e e 21
Debugging 0N the ENtire SCHPLvuuiiiii e e 21
Debugging on part(s) of the SCrPtveiiiiiii e 22
SUMIMIBIY ettt et ettt et et r et et e e et e r et e e e e et e e e e erans 24
S (o = ST PP UPPPTTRPPPPIN 25

3. The Bash enVIFONMENt ... et 26

Shell INitialization FIlES e e e 26
System-wide configuration filEScouuiiiiiii e 26
Individual user configuration fil€Siiiiiiiiii i 28
Changing shell configuration fileS ... 31

Bash Guide for Beginners

VAIHBDIES ..o e 32
TYPES Of VAADIES ...coeiiii e 32
Creating Variablescoii i 34
EXPOrting VariablESuiiiiicie e 35
RESEIVE VATADIES ... i 36
S L ol I 0T - 01 £ 40
Script recycling with variables ..., 43

(@010 11510l 0= - o (= £ PPN 44
LAY Y2 ST 44
ESCAPE CharaCtersS .. vve i e 44
S g Te TN 0 (U] == P 44
10101 o] TSN 11 0] (= 45
y Y VIS R @ |1 o 1] oo 45
LOCAIES ..ottt 45

S 1c L= o= o PP 45
(€1 o1 | PP 45
BraCe EXPANSIONcivueiiiii e i e et e aaaes 46
THlAE EXPANSIONiitiiiii e e e e 46
Shell parameter and variable EXPanSioNcveiiiieiiiiii e 47
Command SUDSHTULIONeiieiiiei i e e e s 47
ATITRMELIC EXPANSION ...uiiiii e e e e e e aeas 48
Process SUDSHTULIONcvveeeieiiii e e et eeeaenns 49
AVAY T (o I o) 1o R 50
File NAME EXPANSIONuiiiiiiii e e e e e e e e et e e e e e eeeen 50

F Y LTS =SSOSR 51
WHEE @€ BlI@SES? ...vuiiiiii ettt 51
Creating and remMOoVING @liaSESouuiiiii e 52

Y o gl =S g T o1 o] <P 53
Displaying OPLIONScvuueiieeii e e e e e e e e e et e e e e et e e e aaen 53
(0157210 1o] oo I o o) 110 1 53

SUIMIMIBIY .ttt e e e e et e et e et e e e e et 54

S = PSPPI 55

o 11 F= = 0 =S o] P 56

R [0 = = 0 (=S o] < 56
What are regular EXPreSSIONS?ciuiiiiiieeeie et e e e e e e e e e e e et e et e e e e aens 56
Regular expression MEtaCharaClerSuueiiee i e e e e e e eans 56
Basic versus extended regular EXPreSSIONScvvuueeiinieeiiieeiieeeiie e et e e e e eaaeeeens 57

|G g o =S g To e = o PP 57
ATAY g SN0 = o PPN 57
Grep and regular EXPIESSIONScvuuieii et et e et e e e e e e e e e e e e et e e et e e et e eanaees 58

Pattern matching using Bash fEAIUIESocvvniiiiii i e 60
(O T 1= o (= - 010 (=< S 60
CharaCter ClaSSES . .ovvviieiii et e e e 61

RSl 00100 Y PP 61

S = PSPPSR 62

5. The GNU Sad SIream €Ituuniiiiiiii e e e e e et e e e 63

g1 [0 ot [o OO 63
A= IS <o R 63
SEA COMMIBNAS ... eevtie ettt e et e e et e e et e e e e et e e e e et aeeeabeaeeeabe e eeennnns 63

Fa10= = (V7= = o 1] oo PSP 64
Printing lines containing @ Patternooiiiiiiiiii e e 64
Deleting lines of input contaiNing a Patterneevviieiiiieeie e e aen 65
RANGES Of [INES ...ttt e e e e aeas 65
Find and replace With SBd ..o 66

Bash Guide for Beginners

NON-INLEraCtiVe BAITING ...cvveeii e e e e e e e e e aaaa e 67
Reading sed commands from afilecoooiiiiiii i 67
WIHEING OULPUL TIIES ..ueeie e e e e 68

RSl 001 0= Y PP 69

S = PSPPI 69

6. The GNU awk programming lanQUBOEceuueiinieiiii e e e eee e e e e e e e st e et e e e eeens 71

Getting started With gawkcoouiiiii 71
WHEE 1S QAWK ? .ot e e e e e e e e e e et e e e eaa s 71
GAWK COMMENGAS ... eieiiii ettt e e et e e et e e e et e e e e et eas 71

B L= o1 o oo =0 72
Printing selected fIaldsoiiiiiiii 72
FOrmatting fleldScovniii i 73
The print command and regular EXPreSSIONSc.uueiiiieeiiieriieeeeee e e e e e eaens 74
S o Lc o 07 1= 11 75
LT T Q= o 1 o) 75

GaAWK VaTADIES ...oeeeieee e 76
The input field SEPArAtOrccvve e e eens 76
THE OULPUL SEPAIALONS ..uuiiveeiii e eeiie e e e e e e e e e e e e e e e e et e et e e et e e et e e e e e aaneeaens 77
The NUMDEr OF TECOTASvuiiiiiii e e eee 78
User defined VariableSooouuiiiiiii e 78
o =t o] o)== P 79
The Printf Programooi e e 79

RSl 0010 Y PP 79

S = PSPPI 80

7. CONAItIONal SEEEEIMENES ...oevuiiieiiei et e et e e et e e et e e e e et e e e e et e e e era e 82

H g1 To (W e [To o I8 (o 1N) SO SPP 82
(€T 01 | PP 82
Simple applications Of Ifocoiiii e 85

MOre adVanCeO If USBOE ... cvvuiiii e e e e e e e e e e e e e e e e eanas 87
IF/tNEN/EISE CONSITUCES ... e e et e eeea e eees 87
IfF/then/elif/elSE CONSIIUCESiiiiii e 91
NEStEd If SEAEMENES ..ooeviieeeii e e e e e e e e e aa e 92
[2T0To == 0] 0 - 110 gL PN 92
Using the exit statement and ifcoooiiiiiiii 93

USING CASE SLAEEIMENES .. oevniiiieeii i ee e e e e e e e e e e e et e e et e e et e e et e e et e e et e eeaneeeees 95
SIMplified CONAITIONSciiiii e e e 95
FaTN s] o LA o o) = 96

SUIMIMIBIY .ttt e e e et e e e e e e 97

S = PSPPI 97

8. WItiNG INTEraCtiVE SCIIPES 1.uuiii it e e e e e e e e e e e et e e e ean s 99

DiSPlayiNg USEr MESSAGES ©vuuevrneiit ettt ettt eeetee st e et e e et e est e et e et eeateeetaeetaeesnaeernaaees 99
INEEICHIVE OF NMOL? ...t e e e e et e e e et e e et 99
Using the echo built-in commandccoooiiiiiii e, 99

(0 (o a1 oo JRU (S = g T oo LU (N 102
Using the read built-in commandcoooiiiiiiiiiiii e 102
Prompting for USEr iNPULcouiiiii e e e e e 103
Redirection and file deSCriPtOrScouuiiiiiiiiie e 105
File INPUt @and OULPULoiii e e e e e e e e e e aaas 107

RSl 0010 0= YT 112

= o == PRSP 112

9. REPELITIVE TASKS .1uuiiiieiiii it e e e e e e e e e e e e e aaan 114

B 2T o oo o TP 114
HOW dOBS It WOTK? ..o e e e et e eeees 114
Gz 11] 0] == P 114

Bash Guide for Beginners

B LS 11 L= oo o TPt 115
LAV = S L PSSP 115
Gz 1] 0] == PP 116

B I L 011 I oo o TP 118
LAV = S L PSSP 118
Gz 1 1] o) =N 119

1/O redireCtion and 100PScouuiiiii i e e 119
TaT L1 =0 1= o1 o I 119
(O 10 1110 (=0] = ot (o] o 120

Break and CONLINUEccuuuieeiiiie et e et e e et e e e et s e e e ettneeeeatnaeeeenenneeeees 120
The break DUITT-IN ... e e 120
The continue DUITT-IN ...o.uu e e 122
Gz 1] 0] == PP 122

Making menus with the select built-in ..o 123
LT o1 = PSP 123
SUBIMENUS ...ttt et e et e e e et e e et n e e e et e e e eananns 125

The Shift DUITE-IN .. 125
Wt dOES It O? .. 125
s 11] o)== P 125

RSl 0010 0= YT 126

= == PP 127

10. MOFE ON VATADIES ..ot e et e ettt e e ettt e e e a e e et e aae 128

TYPES Of VAIAHIESeiii i e e 128
General assignMENt Of VAIUESc.uuiiiiiiiii e e eae s 128
Using the declare BUIlt-in ..o 128
L0102 0 | £ T PP 129

ATITAY VaNADIES ... 130
(O g To = 11 = Y 130
Dereferencing the variableS in an arrayccuveiiiiiiiiieie e 130
Deleting array Variablesooiiiiiiiii e 131
EXAMPIES OF GITAYS . oovvciii e e e e e e e e e e 131

Operations ON VarableSiiiii e e e 133
Arithmetic ON Varalescooeie i 133
Length of aVvariableccouiiiii i 133
Transformations Of variableScoovviviiiiii 134

ST 0010 07T YT 137

S o == PP 137

T T o TSP 138

g1 oo [0 ot [o PR 138
What @re FUNCHIONS?uuiiiii e e e 138
0T Tox (L0 IR Y | = P 138
Positional parameters in fUNCLIONScooiuiiiiiiii e e 138
Displaying fUNCLIONScouuiiii e e e e e e e e e e 140

Examples of fUNCLIONS IN SCHPLSuuiiiieii e e e e e e 140
=0y 1o [140
Setting the Pathcoovi 140
REMOLE DACKUDS ... i 141

RSl 0010 0= YT 143

= o == PP 143

A Or (o g 11 0o IS T 7= £ 144

S o] 7= | P 144
g1 18 ot [o PP 144
Usage of SignalsS With Killoiiiiiii e 145

L= T PRSPPI 146

Vi

Bash Guide for Beginners

LT o1 = PSP 146

HOW Bash iNtEPretS trapscvuvnieii e aenas 146

[Ko =t 0 o)L= 147

RSl 0010 0T YT 147
= o == PRSP 147

Y g 1c | = 1T = PP 149
COMMON TEALUIES ... ettt ettt e e e et et e e et e e eb e e eneeeens 149
(DN = T a0 R 7= (0 (= 150
L1105 P 153
g0 1= PSPPI 162

Vii

List of Figures

1. Bash Guide for Beginners front COVENo.uuiiiiiiiiii i Xi
P o] o TSP T SO PPT P UPPPPTRUPPPIN 18
3.1. Different prompts for diffErent USEISiiiiiiiiii e 31
B. 1. FIEIAS 1N BWK et 72
7.1. Testing of a command line argument With if ..., 89

7.2. Example using Boolean operators

viii

List of Tables

1. TypographiC and USBGE CONVENLIONScieeruneieitieeeeeti e e et e et et et eeenb e e eae e eenanns Xiii
1.1. Overview of Programming TEIMSceiiuuu ettt ettt ettt e e et e e e et e e e et e e eeneaeeees 11
2.1. Overview of set debugging OPLIONScveeeineiiii et 23
3.1. Reserved Bourne shell Variablesooieiiiieiei e 36
3.2. Resarved Bash Variablescooouiiii e 37
3.3. Special bash VarTalleScoouuiii e 40
3.4, ATTNMELIC OPEIELOIS ... ceeeti ettt et ettt e et ettt e e ettt e e e eate e e e entnaeeeene 48
4.1. Regular eXPreSSiON OPEIELOIScceuuuueterti ettt e tett et ebi e et et e et et e et et e e e et e e e et eas 56
5.1. Sed editing COMMBINGSccvuuiiiitieeeiii ettt e e ettt e e et e e e et e e ettt e e e erbaeeeentnaaeeens 63
5.2, SO OPLIONS ...ttt ettt e s 64
6.1. Formatting charaCters fOr QAWKc..uuoiiiiii i 74
7.1, PriMary EXPIESSIONSceeuuueteeti ettt ettt ettt r ettt e et et e et et e et et e et et e et et e e e e eaa s 82
7.2. COMDINING EXPIESSIONS ...eevtteeeetti e teet et et e et eat et eet e e e tb e et ee e et eabr e e e enaneeeenaa e eeennns 84
8.1. Escape sequences used by the echo commMaNdoviiiiiiiiiiiiiii e 101
8.2. Options to the read DUITE-IN ..o e 102
10.1. Options to the declare BUITT-INcooiiiii e 128
12.1. Control SIgNalS iN Bashuuiiiiiii e 144
12.2. CommMON Kill SIGNEIS ... et 145
A.L CommON SNEIl FEALUINES it e e et e e e e e e 149
A.2. DIffering Sell FEALUIEScoooiiiii e e 150

Introduction
Why this guide?

The primary reason for writing this document is that a lot of readers feel the existing HOWTO [http://
tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html] to be too short and incompl ete, while the Bash Script-
ing [http://tldp.org/L DP/abs/html/] guide is too much of a reference work. There is nothing in between
these two extremes. | also wrote this guide on the general principle that not enough free basic courses are
available, though they should be.

Thisisapractical guidewhich, while not always being too serious, triesto givereal-lifeinstead of theoreti-
cal examples. | partly wroteit because | don't get excited with stripped down and over-simplified examples
written by people who know what they are talking about, showing some really cool Bash feature so much
out of its context that you cannot ever useit in practical circumstances. Y ou can read that sort of stuff after
finishing this book, which contains exercises and examples that will help you survive in the real world.

From my experience as UNIX/Linux user, system administrator and trainer, | know that people can have
years of daily interaction with their systems, without having the slightest knowledge of task automation.

Thus they often think that UNIX is not user-friendly, and even worse, they get the impression that it is
slow and old-fashioned. This problem is another one that can be remedied by this guide.

Who should read this book?

Everybody working on aUNIX or UNIX-like system who wants to make life easier on themselves, power
users and sysadmins alike, can benefit from reading this book. Readers who already have agrasp of work-
ing the system using the command line will learn the ins and outs of shell scripting that ease execution of
daily tasks. System administration relies agreat deal on shell scripting; common tasks are often automated
using simple scripts. Thisdocument isfull of examplesthat will encourage you to write your own and that
will inspire you to improve on existing scripts.

Prerequisites/not in this course:

* You should be an experienced UNIX or Linux user, familiar with basic commands, man pages and
documentation

» Being able to use atext editor

» Understand system boot and shutdown processes, init and initscripts

 Create users and groups, set passwords

» Permissions, special modes

» Understand naming conventions for devices, partitioning, mounting/unmounting file systems

» Adding/removing software on your system

See Introduction to Linux [http://tldp.org/LDP/intro-linux/html/] (or your local TLDP mirror [http://
www.tldp.org/mirrors.htmi]) if you haven't mastered one or more of these topics. Additional information

can be found in your system documentation (man and info pages), or at the Linux Documentation Project
[http://tidp.org].

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
http://www.tldp.org/mirrors.html
http://www.tldp.org/mirrors.html
http://www.tldp.org/mirrors.html
http://tldp.org
http://tldp.org

Introduction

New versions, translations and availability

The most recent edition can be found at http://tille.garrels.be/training/bash/. Y ou should find the same
version at http://tldp.org/L DP/Bash-Beginners-Guide/html/index.html.

This guide is available in print from Fultuscom [http://store.fultus.com/product_info.php?
products_id=66].

Figure 1. Bash Guidefor Beginnersfront cover

Fultus™

Machrelt Garrels

pash guid%

lel” =

. Er"E
beglnn \ s el

Fulies: Teehmen! Library

This guide has been trand ated:
» Chinesetrandation at http://xiaowang.net/bgb-cn/, by Wang Wei.

» Ukrainian trandlation at http://docs.linux.org.ua/index.php/LDP:Bash_beginners guide, by Yarosav
Fedevych and histeam.

A french trandation is in the making and will be linked to as soon as it is finished.

Revision History

Revision History

Revision 1.11 2008-12-27 MG
Processed input from readers.

Revision 1.10 2008-06-06 MG
address change

Revision 1.9 2006-10-10 MG
Incorporated reader remarks, added index using DocBook tags.

Revision 1.8 2006-03-15 MG

clarified example in Chap4, corrected here doc in chap9, general checks and correction of typos, added
link to Chinese and Ukrainian trandlation, note and stuff to know about awk in chap6.

Xi

http://tille.garrels.be/training/bash/
http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://store.fultus.com/product_info.php?products_id=66
http://store.fultus.com/product_info.php?products_id=66
http://store.fultus.com/product_info.php?products_id=66
http://xiaowang.net/bgb-cn/
http://docs.linux.org.ua/index.php/LDP:Bash_beginners_guide

Introduction

Revision 1.7 2005-09-05 MG
Corrected typosin chapter 3, 6 and 7, incorporated user remarks, added a note in chap?.
Revision 1.6 2005-03-01 MG
Minor debugging, added more keywords, info about new Bash 3.0, took out blank image.
Revision 1.0 2004-04-27 ™
Initial release for LDP; more exercises, more markup, less errors and abuse; added glossary.
Revision 1.0-beta 2003-04-20 MG
Pre-release

Contributions

Thanks to al the friends who helped (or tried to) and to my husband; your encouraging words made this
work possible. Thanksto all the people who submitted bug reports, examples and remarks - among many,
many others:

» HansBoal, one of the groupies

* Mike Sim, remarks on style

e Dan Richter, for array examples

e Gerg Ferguson, for ideas on thetitle

* Mendel Leo Cooper, for making room

» #inux.be, for keeping my feet on the ground

» Frank Wang, for his detailed remarks on al the things | did wrong ;-)

Specia thanks to Tabatha Marshall, who volunteered to do a complete review and spell and grammar
check. We make a great team: she works when | sleep. And vice versa;-)

Feedback

Missing information, missing links, missing characters, remarks? Mail it to
<tille wants no spam _at_garrels dot be>

the maintainer of this document.

Copyright information

Copyright (c) 2002-2007, Machtelt Garrels

Al rights reserved.

Redi stribution and use in source and binary forms, with or w thout

nodi fication, are permtted provided that the followi ng conditions are net:

* Redistributions of source code nmust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

* Redistributions in binary form nmust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunent ati on and/or other materials provided with the distribution.

b B T R B

Xii

Introduction

* Neither the name of the author, Machtelt Garrels, nor the
nanes of its contributors may be used to endorse or pronote products
derived fromthis software without specific prior witten perm ssion.

TH' S SOFTWARE IS PROVI DED BY THE AUTHOR AND CONTRI BUTORS "AS | S' AND ANY
EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE

DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR AND CONTRI BUTORS BE LI ABLE FOR ANY
DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DANMAGES

(I NCLUDI NG, BUT NOT LIMTED TO PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HONEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT

(1 NCLUDI NG NEGLI GENCE CR OTHERW SE) ARI SING I N ANY WAY QUT OF THE USE OF THI S
SOFTWARE, EVEN | F ADVI SED OF THE PCSSI Bl LI TY OF SUCH DANAGE.

¥ 0%k ok Sk X 3k X kX X X Xk

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is offered without warranty, either
express or implied. Neither the author nor the publisher nor any dealer or distributor will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

Thelogos, trademarks and symbols used in this book are the properties of their respective owners.

What do you need?

bash, available from http://www.gnu.org/directory/GNU/. The Bash shell is available on nearly every
Linux system, and can these days be found on awide variety of UNIX systems.

Compiles easily if you need to make your own, tested on awide variety of UNIX, Linux, MS Windows
and other systems.

Conventions used in this document

The following typographic and usage conventions occur in this text:

Table 1. Typographic and usage conventions

Text type M eaning

“Quoted text” Quotes from people, quoted computer output.

termnal view Literal computer input and output captured from
the terminal, usually rendered with alight grey
background.

command Name of a command that can be entered on the
command line.

VARl ABLE Name of avariable or pointer to content of avari-
able, asin $VARNAME.

option Option to acommand, asin “the - a option to the
Is command”.

ar gunent Argument to acommand, asin“read man | s”.

command options argunents Command synopsis or general usage, on a separat-

ed line.

Xiii

http://www.gnu.org/directory/GNU/

Introduction

Text type M eaning

fil enane Name of afile or directory, for example “ Change
tothe/ usr/ bi n directory.”

Key Keysto hit on the keyboard, such as “type Q to
quit”.

Button Graphical button to click, like the OK button.

Menu — Choice Choice to select from a graphical menu, for in-
stance: “Select Help — About Mozillain your
browser.”

Terminology Important term or concept: “ The Linux kernel is
the heart of the system.”

The backdash in aterminal view or command syn-
opsisindicates an unfinished line. In other words,
if you see along command that is cut into multiple
lines, \ means “Don't press Enter yet!”

See Chapter 1, Bash and Bash scripts link to related subject within this guide.

The author [http://tille.garrels.be] Clickable link to an external web resource.

Organization of this document

This guide discusses concepts useful in the daily life of the serious Bash user. While a basic knowledge
of the usage of the shell isrequired, we start with adiscussion of the basic shell components and practices
in the first three chapters.

Chaptersfour to six are discussions of basic tools that are commonly used in shell scripts.

Chapters eight to twelve discuss the most common constructs in shell scripts.

All chapters come with exercises that will test your preparedness for the next chapter.

Chapter 1, Bash and Bash scripts: Bash basics: why Bash is so good, building blocks, first guidelines
on developing good scripts.

Chapter 2, Writing and debugging scripts. Script basics: writing and debugging.

Chapter 3, The Bash environment: The Bash Environment: initialization files, variables, quoting char-
acters, shell expansion order, aliases, options.

Chapter 4, Regular expressions. Regular expressions: an introduction.

Chapter 5, The GNU sed stream editor: Sed: an introduction to the sed line editor.

Chapter 6, The GNU awk programming language: Awk: introduction to the awk programming language.
Chapter 7, Conditional statements: Conditional statements: constructs used in Bash to test conditions.

Chapter 8, Writing interactive scripts: Interactive scripts: making scripts user-friendly, catching user
input.

Chapter 9, Repetitive tasks: Executing commands repetitively: constructs used in Bash to automate
command execution.

Xiv

http://tille.garrels.be
http://tille.garrels.be

Introduction

Chapter 10, More on variables: Advanced variables: specifying variable types, introduction to arrays
of variables, operations on variables.

Chapter 11, Functions. Functions: an introduction.

Chapter 12, Catching signals: Catching signals: introduction to process signalling, trapping user-sent
signals.

XV

Chapter 1. Bash and Bash scripts

In this introduction module we

Describe some common shells

Point out GNU Bash advantages and features
Describe the shell's building blocks

Discuss Bash initialization files

See how the shell executes commands

Look into some simple script examples

Common shell programs

General shell functions

The UNIX shell program interprets user commands, which are either directly entered by the user, or which
can be read from afile called the shell script or shell program. Shell scripts are interpreted, not compiled.
The shell reads commands from the script line per line and searches for those commands on the system
(see the section called “ Advantages of the Bourne Again SHell”), while a compiler converts a program
into machine readable form, an executable file - which may then be used in a shell script.

Apart from passing commands to the kernel, the main task of a shell is providing a user environment,
which can be configured individually using shell resource configuration files.

Shell types

Just like people know different languages and dialects, your UNIX system will usually offer a variety of
shell types:

« sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX-related environments.

Thisisthe basic shell, asmall program with few features. While thisis not the standard shell, it is till
available on every Linux system for compatibility with UNIX programs.

bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable
for beginning users while being at the same time a powerful tool for the advanced and professional
user. On Linux, bash is the standard shell for common users. This shell is a so-called superset of the
Bourne shell, a set of add-ons and plug-ins. This means that the Bourne Again shell is compatible with
the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not alwaysthe
case. All examples and exercisesin this book use bash.

csh or C shell: the syntax of this shell resemblesthat of the C programming language. Sometimes asked
for by programmers.

tesh or TENEX C shell: asuperset of the common C shell, enhancing user-friendliness and speed. That
iswhy some also call it the Turbo C shell.

ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the
Bourne shell; with standard configuration a nightmare for beginning users.

Thefile/ et ¢/ shel | s gives an overview of known shells on a Linux system:

Bash and Bash scripts

m a:~> cat /etc/shells
/ bi n/ bash

/ bi n/sh

/bin/tcsh

/ bin/csh

Your default shell isset inthe/ et ¢/ passwd file, likethisline for user mia:

m a: L2NOf gdl Pr HwWE: 504: 504: M a Maya: / horme/ mi a: / bi n/ bash

To switch from one shell to another, just enter the name of the new shell in the active terminal. The system
finds the directory where the name occurs using the PATH settings, and since a shell is an executable file
(program), the current shell activatesit and it gets executed. A new prompt is usually shown, because each
shell hasitstypical appearance:

m a: ~> tcsh
[m a@ost21 ~]$

Advantages of the Bourne Again SHell
Bash is the GNU shell

The GNU project (GNU's Not UNIX) provides tools for UNIX-like system administration which are free
software and comply to UNIX standards.

Bash is an sh-compatible shell that incorporates useful features from the Korn shell (ksh) and C shell
(csh). It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard. It
offersfunctional improvements over shfor both programming and interactive use; theseinclude command
line editing, unlimited size command history, job control, shell functions and aiases, indexed arrays of
unlimited size, and integer arithmetic in any base from two to sixty-four. Bash can run most sh scripts
without modification.

Like the other GNU projects, the bash initiative was started to preserve, protect and promote the freedom
to use, study, copy, modify and redistribute software. It is generally known that such conditions stimulate
creativity. Thiswas also the case with the bash program, which has alot of extra featuresthat other shells
can't offer.

Features only found in bash

Invocation

In addition to the single-character shell command line options which can generally be configured using
the set shell built-in command, there are several multi-character options that you can use. We will come
across a couple of the more popular options in this and the following chapters; the complete list can be

found in the Bash info pages, Bash features — Invoking Bash.

Bash startup files

Startup files are scripts that are read and executed by Bash when it starts. The following subsections
describe different ways to start the shell, and the startup files that are read consequently.

Bash and Bash scripts

Invoked

Invoked

Invoked

Invoked

as an interactive login shell, or with "--login’

Interactive means you can enter commands. The shell is not running because a script has been activated.
A login shell means that you got the shell after authenticating to the system, usually by giving your user
name and password.

Files read:

« /etc/profile

e ~/.bash _profile,~/.bash_loginor~/.profil e:first existing readablefileisread
» ~/ . bash_I ogout upon logout.

Error messages are printed if configuration files exist but are not readable. If a file does not exist, bash
searches for the next.

as an interactive non-login shell

A non-login shell means that you did not have to authenticate to the system. For instance, when you open
aterminal using an icon, or amenu item, that is anon-login shell.

Filesread:

* ~/.bashrc

Thisfileisusualy referredtoin~/ . bash_profil e:

if [-f ~/.bashrc]; then . ~/.bashrc; fi

See Chapter 7, Conditional statements for more information on the if construct.

non-interactively

All scripts use non-interactive shells. They are programmed to do certain tasks and cannot be instructed
to do other jobs than those for which they are programmed.

Filesread:
* defined by BASH ENV

PATH is not used to search for this file, so if you want to use it, best refer to it by giving the full path
and file name.

with the sh command

Bash triesto behave as the historical Bourne sh program while conforming to the POSI X standard aswell.
Filesread:

« /etc/profile

o ~/.profile

When invoked interactively, the ENV variable can point to extra startup information.

POSIX mode

This option is enabled either using the set built-in:

Bash and Bash scripts

set -0 posix

or by calling the bash program with the - - posi x option. Bash will then try to behave as compliant as
possible to the POSIX standard for shells. Setting the POSI XLY _CORRECT variable does the same.

Files read:

« defined by ENV variable.
Invoked remotely

Files read when invoked by rshd:

e ~/ . bashrc
Avoid use of r-tools

Be aware of the dangers when using tools such asrlogin, telnet, rsh and rcp. They are intrinsi-
cally insecure because confidential data is sent over the network unencrypted. If you need tools
for remote execution, file transfer and so on, use an implementation of Secure SHell, general-
ly known as SSH, freely available from http://www.openssh.org. Different client programs are
available for non-UNIX systems as well, see your local software mirror.

Invoked when UID is not equal to EUID

No startup files are read in this case.
Interactive shells

What is an interactive shell?

An interactive shell generally reads from, and writes to, a user'sterminal: input and output are connected
to aterminal. Bash interactive behavior is started when the bash command is called upon without non-
option arguments, except when the option is astring to read from or when the shell isinvoked to read from
standard input, which allows for positional parameters to be set (see Chapter 3, The Bash environment).

Is this shell interactive?
Test by looking at the content of the special parameter - , it contains an 'i' when the shell isinteractive;
eddy: ~> echo $-
hi nBH
In non-interactive shells, the prompt, PS1, is unset.
Interactive shell behavior
Differences in interactive mode:
» Bash reads startup files.
« Job control enabled by default.
* Promptsare set, PS2 isenabled for multi-line commands, it isusually set to“>". Thisisalso the prompt

you get when the shell thinks you entered an unfinished command, for instance when you forget quotes,
command structures that cannot be left out, etc.

http://www.openssh.org

Bash and Bash scripts

Commands are by default read from the command line using readline.

Bash interprets the shell optioni gnor eeof instead of exiting immediately upon receiving EOF (End
Of File).

Command history and history expansion are enabled by default. History is saved in the file pointed to
by Hl STFI LE when the shell exits. By default, H STFI LE pointsto ~/ . bash_hi st ory.

Alias expansion is enabled.
In the absence of traps, the SI GTERMsignal isignored.

In the absence of traps, SI A NT is caught and handled. Thus, typing Ctrl+C, for example, will not
quit your interactive shell.

Sending SI GHUP signalsto all jobs on exit is configured with the huponexi t option.
Commands are executed upon read.
Bash checks for mail periodically.

Bash can be configured to exit when it encounters unreferenced variables. In interactive mode this
behavior is disabled.

When shell built-in commands encounter redirection errors, this will not cause the shell to exit.

Specia built-ins returning errors when used in POSIX mode don't cause the shell to exit. The built-in
commands are listed in the section called “ Shell built-in commands”.

Failure of exec will not exit the shell.
Parser syntax errors don't cause the shell to exit.
Simple spell check for the arguments to the cd built-in is enabled by default.

Automatic exit after the length of time specified in the TMOUT variable has passed, is enabled.

More information:

the section called “Variables’
the section called “More Bash options’
See Chapter 12, Catching signals for more about signals.

the section called “ Shell expansion” discusses the various expansions performed upon entering a com-
mand.

Conditionals

Conditional expressions are used by the [[compound command and by the test and [built-in commands.

Expressions may be unary or binary. Unary expressions are often used to examine the status of afile. You
only need one object, for instance afile, to do the operation on.

There are string operators and numeric comparison operators as well; these are binary operators, requiring
two objects to do the operation on. If the FI LE argument to one of the primariesisin the form/ dev/
f d/ N, then file descriptor N is checked. If the FI LE argument to one of the primariesis one of / dev/
stdi n,/dev/ stdout or/dev/ stderr,thenfiledescriptor O, 1 or 2 respectively is checked.

Bash and Bash scripts

Conditionals are discussed in detail in Chapter 7, Conditional statements.

More information about the file descriptorsin the section called “ Redirection and file descriptors’.

Shell arithmetic
Theshell allowsarithmetic expressionsto be evaluated, as one of the shell expansionsor by thelet built-in.

Evaluation is donein fixed-width integers with no check for overflow, though division by O istrapped and
flagged as an error. The operators and their precedence and associativity arethe same asin the C language,
see Chapter 3, The Bash environment.

Aliases

Aliases alow astring to be substituted for aword when it is used as the first word of a simple command.
The shell maintains alist of aliases that may be set and unset with the alias and unalias commands.

Bash always reads at |east one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input is read.
The commands following the alias definition on that line are not affected by the new dlias.

Aliases are expanded when a function definition is read, not when the function is executed, because a
function definition isitself acompound command. As a consequence, aliases defined in afunction are not
available until after that function is executed.

We will discuss dliasesin detail in the section called “Aliases’.

Arrays

Bash provides one-dimensional array variables. Any variable may be used as an array; the declar e built-in
will explicitly declarean array. Thereisno maximum limit on the size of an array, nor any requirement that
members beindexed or assigned contiguously. Arrays are zero-based. See Chapter 10, More on variables.

Directory stack

Thedirectory stack isalist of recently-visited directories. The pushd built-in adds directories to the stack
asit changesthe current directory, and the popd built-in removes specified directories from the stack and
changes the current directory to the directory removed.

Content can be displayed issuing the dir s command or by checking the content of the DI RSTACK variable.

More information about the workings of this mechanism can be found in the Bash info pages.

The prompt

Bash makes playing with the prompt even more fun. See the section Controlling the Prompt in the Bash
info pages.

The restricted shell
When invoked as rbash or withthe- - restri ct ed or - r option, the following happens:
* Thecd built-in is disabled.

 Setting or unsetting SHELL, PATH, ENV or BASH_ENV is not possible.

Bash and Bash scripts

» Command names can no longer contain slashes.

* Filenames containing a slash are not allowed with the . (sour ce) built-in command.
» The hash built-in does not accept slashes with the - p option.

* Import of functions at startup is disabled.

e SHELLOPTS isignored at startup.

» Output redirection using >, >|, ><, >& , &> and >> is disabled.

» Theexec built-in is disabled.

» The-f and- d options are disabled for the enable built-in.

A default PATH cannot be specified with the command built-in.
 Turning off restricted mode is not possible.

When acommand that is found to be a shell script is executed, rbash turns off any restrictions in the shell
spawned to execute the script.

More information:
» thesection called “Variables’

» the section called “More Bash options’

* Info Bash — Basic Shell Features - Redirections

« the section called “ Redirection and file descriptors’: advanced redirection

Executing commands

General

Bash determines the type of program that isto be executed. Normal programs are system commands that
exist in compiled form on your system. When such aprogram is executed, anew processis created because
Bash makes an exact copy of itself. This child process has the same environment as its parent, only the
process |D number is different. This procedureis called forking.

After the forking process, the address space of the child process is overwritten with the new process data.
Thisis done through an exec call to the system.

The fork-and-exec mechanism thus switches an old command with anew, while the environment in which
the new program is executed remains the same, including configuration of input and output devices, en-
vironment variables and priority. This mechanism is used to create all UNIX processes, so it also applies
to the Linux operating system. Even the first process, init, with process ID 1, is forked during the boot
procedure in the so-called bootstrapping procedure.

Shell built-in commands

Built-in commands are contained within the shell itself. When the name of a built-in command is used
as the first word of a simple command, the shell executes the command directly, without creating a new

Bash and Bash scripts

process. Built-in commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

Bash supports 3 types of built-in commands:
* Bourne Shell built-ins:

., ., break, cd, continue, eval, exec, exit, export, getopts, hash, pwd, readonly, return, set, shift,
test, [, times, trap, umask and unset.

» Bash built-in commands:

alias, bind, builtin, command, declare, echo, enable, help, let, local, logout, printf, read, shopt,
type, typeset, ulimit and unalias.

 Specia built-in commands:

When Bash is executing in POSIX mode, the special built-ins differ from other built-in commands in
three respects:

1. Special built-ins are found before shell functions during command |ookup.
2. If aspecia built-in returns an error status, a non-interactive shell exits.

3. Assignment statements preceding the command stay in effect in the shell environment after the com-
mand compl etes.

The POSIX specid built-insare :, ., break, continue, eval, exec, exit, export, readonly, return, set,
shift, trap and unset.

Most of these built-ins will be discussed in the next chapters. For those commands for which this is not
the case, we refer to the Info pages.

Executing programs from a script

When the program being executed is a shell script, bash will create a new bash process using afork. This
subshell readsthe linesfrom the shell script oneline at atime. Commands on each line areread, interpreted
and executed as if they would have come directly from the keyboard.

While the subshell processes each line of the script, the parent shell waits for its child process to finish.
When there are no more lines in the shell script to read, the subshell terminates. The parent shell awakes
and displays a new prompt.

Building blocks

Shell building blocks
Shell syntax

If input is not commented, the shell reads it and divides it into words and operators, employing quoting
rules to define the meaning of each character of input. Then these words and operators are translated into
commands and other constructs, which return an exit status available for inspection or processing. The
above fork-and-exec schemeis only applied after the shell has analyzed input in the following way:

e Theshell readsitsinput from afile, from a string or from the user's terminal.

Bash and Bash scripts

* Input is broken up into words and operators, obeying the quoting rules, see Chapter 3, The Bash envi-
ronment. These tokens are separated by metacharacters. Alias expansion is performed.

» The shell parses (analyzes and substitutes) the tokens into simple and compound commands.

» Bash performs various shell expansions, breaking the expanded tokens into lists of filenames and com-
mands and arguments.

» Redirection is performed if necessary, redirection operators and their operands are removed from the
argument list.

» Commands are executed.

e Optionally the shell waits for the command to complete and collects its exit status.

Shell commands

A simple shell command such astouchfilelfil e2fil e3 consistsof the command itself followed
by arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in avariety of ways.
in apipeline in which the output of one command becomes the input of a second, in aloop or conditional
construct, or in some other grouping. A couple of examples:

s | nore

gunzip file.tar.gz | tar xvf -

Shell functions

Shell functions are away to group commands for later execution using a single name for the group. They
areexecutedjust likea“regular” command. When the name of ashell function isused asasimple command
name, the list of commands associated with that function name is executed.

Shell functions are executed in the current shell context; no new processis created to interpret them.

Functions are explained in Chapter 11, Functions.

Shell parameters

A parameter is an entity that stores values. It can be a name, a number or a special value. For the shell's
purpose, a variable is a parameter that stores a name. A variable has a value and zero or more attributes.
Variables are created with the declar e shell built-in command.

If no value is given, avariable is assigned the null string. Variables can only be removed with the unset
built-in.

Assigning variablesisdiscussed in the section called “Variables’, advanced use of variablesin Chapter 10,
More on variables.

Shell expansions

Shell expansion is performed after each command line has been split into tokens. These are the expansions
performed:

Bash and Bash scripts

Brace expansion

Tilde expansion

Parameter and variable expansion
Command substitution
Arithmetic expansion

Word splitting

Filename expansion

WEe'll discuss these expansion typesin detail in the section called “ Shell expansion”.

Redirections

Before acommand is executed, itsinput and output may be redirected using a special notation interpreted
by the shell. Redirection may also be used to open and close files for the current shell execution environ-
ment.

Executing commands

When executing acommand, the words that the parser has marked as variable assignments (preceding the
command name) and redirections are saved for later reference. Words that are not variable assignments or
redirections are expanded; thefirst remaining word after expansion istaken to be the name of the command
and the rest are arguments to that command. Then redirections are performed, then strings assigned to
variables are expanded. If no command name resullts, variables will affect the current shell environment.

An important part of the tasks of the shell is to search for commands. Bash does this as follows:

Check whether the command contains slashes. If not, first check with the function list to seeif it contains
acommand by the name we are looking for.

If command is not a function, check for it in the built-in list.

If command is neither a function nor a built-in, look for it analyzing the directories listed in PATH.
Bash uses a hash table (data storage area in memory) to remember the full path names of executables
so extensive PATH searches can be avoided.

If the search is unsuccessful, bash prints an error message and returns an exit status of 127.

If the search was successful or if the command contains slashes, the shell executes the command in a
separate execution environment.

If execution fails because thefile is not executable and not a directory, it is assumed to be a shell script.

If the command was not begun asynchronously, the shell waitsfor the command to complete and collects
its exit status.

Shell scripts

When a file containing shell commands is used as the first non-option argument when invoking Bash
(without - ¢ or - s, thiswill create a non-interactive shell. This shell first searches for the script file in the
current directory, then looks in PATH if the file cannot be found there.

10

Bash and Bash scripts

Developing good scripts

Properties of good scripts

This guide is mainly about the last shell building block, scripts. Some general considerations before we

continue:

1. A script should run without errors.

2. It should perform the task for which it isintended.

3. Program logic is clearly defined and apparent.

4. A script does not do unnecessary work.

5. Scripts should be reusable.

Structure

The structure of ashell script is very flexible. Even though in Bash alot of freedom is granted, you must
ensure correct logic, flow control and efficiency so that users executing the script can do so easily and

correctly.

When starting on a new script, ask yourself the following questions:

* Will | be needing any information from the user or from the user's environment?

» How will | store that information?

Are there any files that need to be created? Where and with which permissions and ownerships?

* What commandswill | use? When using the script on different systems, do all these systems have these

commands in the required versions?

» Doesthe user need any notifications? When and why?

Terminology

The table below gives an overview of programming terms that you need to be familiar with:

Table 1.1. Overview of programming terms

Term

What isit?

Command control

Testing exit status of acommand in order to deter-
mine whether a portion of the program should be
executed.

Conditional branch

Logical point in the program when a condition de-
termines what happens next.

Logic flow The overall design of the program. Determines
logical sequence of tasks so that the result is suc-
cessful and controlled.

Loop Part of the program that is performed zero or more

times.

Bash and Bash scripts

Term What isit?

User input Information provided by an external source while
the program is running, can be stored and recalled
when needed.

A word on order and logic

In order to speed up the developing process, the logical order of a program should be thought over in
advance. Thisisyour first step when developing a script.

A number of methods can be used; one of the most common is working with lists. Itemizing the list of
tasks involved in a program alows you to describe each process. Individual tasks can be referenced by
their item number.

Using your own spoken language to pin down the tasks to be executed by your program will help you to
create an understandable form of your program. Later, you can replace the everyday language statements
with shell language words and constructs.

The example below shows such alogic flow design. It describes the rotation of log files. This example
shows a possible repetitive loop, controlled by the number of base log files you want to rotate:

1. Do you want to rotate logs?
a If yes
i. Enter directory name containing the logs to be rotated.
ii. Enter base name of thelog file.
iii. Enter number of days logs should be kept.
iv. Make settings permanent in user's crontab file.
b. If no, goto step 3.
2. Do you want to rotate another set of logs?
a If yes: repeat step 1.
b. If no: goto step 3.
3. Exit

Theuser should provideinformation for the program to do something. Input from the user must be obtained
and stored. The user should be notified that his crontab will change.

An example Bash script: mysystem.sh

The nysyst em sh script below executes some well-known commands (date, w, uname, uptime) to
display information about you and your machine.

tom ~> cat -n nysystem sh
1 #!/bin/bash
2 clear

12

Bash and Bash scripts

echo "This is information provided by nysystem sh.

3
4
5 echo "Hell o, $USER'
6 echo

7

8

Program starts now. "

echo "Today's date is “date’, this is week “date +"%/" ."

9 echo

11 echo "These users are currently connected:"

12 w]| cut -d"™ " -f 1 - | grep -v USER

13 echo

14

15 echo "This is “unanme -s° running on a ~uname -m processor."
16 echo

17

18 echo "This is the uptine information:"

19 uptine

20 echo

21

22 echo "That's all folks!"

A script always starts with the same two characters, “#!”. After that, the shell that will execute the com-
mands following thefirst lineis defined. This script starts with clearing the screen on line 2. Line 3 makes
it print a message, informing the user about what is going to happen. Line 5 greets the user. Lines 6, 9,
13, 16 and 20 are only there for orderly output display purposes. Line 8 prints the current date and the
number of the week. Line 11 is again an informative message, like lines 3, 18 and 22. Line 12 formats
the output of the w; line 15 shows operating system and CPU information. Line 19 gives the uptime and

load information.

Both echo and printf are Bash built-in commands. The first always exitswith a0 status, and simply prints
argumentsfollowed by an end of line character on the standard output, whilethelatter allowsfor definition

of aformatting string and gives a non-zero exit status code upon failure.

Thisis the same script using the printf built-in:

tom ~> cat nysystem sh
#!/ bi n/ bash
cl ear

printf "This is information provided by nmysystem sh.

printf "Hello, $USER \n\n"

Program starts now. \n"

printf "Today's date is "date’, this is week "date +"%/ .\n\n"

printf "These users are currently connected:\n"
w| cut -d " " -f 1 - | grep -v USER | sort -u
printf "\n"

printf "This is “unane -s’ running on a ~unane -m processor.\n\n"

printf "This is the uptime information:\n"
uptinme
printf "\n

13

Bash and Bash scripts

printf "That's all fol ks!\n"

Creating user friendly scripts by means of inserting messages is treated in Chapter 8, Writing interactive
scripts.

Standard location of the Bourne Again shell

Thisimplies that the bash programisinstalled in/ bi n.

If stdout isnot available

If you execute a script from cron, supply full path names and redirect output and errors. Since
the shell runs in non-interactive mode, any errors will cause the script to exit prematurely if you
don't think abouit this.

The following chapters will discuss the details of the above scripts.

Example init script

An init script starts system services on UNIX and Linux machines. The system log daemon, the power
management daemon, the name and mail daemons are common examples. These scripts, also known as
startup scripts, are stored in a specific location on your system, suchas/ etc/rc.d/init.dor/etc/
i nit.d.Init, theinitial process, reads its configuration files and decides which services to start or stop
in each run level. A run level is a configuration of processes; each system has asingle user run level, for
instance, for performing administrative tasks, for which the system has to be in an unused state as much
as possible, such as recovering a critical file system from a backup. Reboot and shutdown run levels are
usually also configured.

The tasks to be executed upon starting a service or stopping it are listed in the startup scripts. It is one of
the system administrator's tasks to configure init, so that services are started and stopped at the correct
moment. When confronted with this task, you need a good understanding of the startup and shutdown
procedures on your system. Wetherefore advise that you read the man pagesfor init andi ni t t ab before
starting on your own initialization scripts.

Hereisavery simple example, that will play a sound upon starting and stopping your machine;

#!/ bi n/ bash

This script is for /etc/rc.d/init.d
Link in rc3.d/ S99audi o-greeting and rc0. d/ KOlaudi o- greeting

case "$1" in
"start')
cat /usr/share/audi o/ at_your_service.au > /dev/audio

"stop')

cat /usr/share/audi o/ oh_no_not_agai n.au > /dev/audio
esac
exit O

The case statement often used in this kind of script is described in the section called “Using the exit
statement and if”.

14

Bash and Bash scripts

Summary

Bash is the GNU shell, compatible with the Bourne shell and incorporating many useful features from
other shells. When the shell is started, it reads its configuration files. The most important are:

« /etc/profile

 ~/.bash_profile

* ~/.bashrc

Bash behaves different when in interactive mode and also has a POSIX compliant and a restricted mode.

Shell commands can be split up in three groups: the shell functions, shell built-ins and existing commands
in adirectory on your system. Bash supports additional built-ins not found in the plain Bourne shell.

Shell scripts consist of these commands arranged as shell syntax dictates. Scripts are read and executed
line per line and should have alogical structure.

Exercises

These are some exercises to warm you up for the next chapter:
1. Whereisthe bash program located on your system?
2. Usethe- - ver si on option to find out which version you are running.

3. Which shell configuration filesare read when you loginto your system using the graphical user interface
and then opening a terminal window?

4. Arethefollowing shellsinteractive shells? Are they login shells?

» A shell opened by clicking on the background of your graphical desktop, selecting “Terminal” or
such from a menu.

A shell that you get after issuing the command ssh | ocal host .
» A shell that you get when logging in to the console in text mode.
» A shell obtained by the command xterm &.

* A shell opened by the mysystem.sh script.

» A shell that you get on a remote host, for which you didn't have to give the login and/or password
because you use SSH and maybe SSH keys.

5. Can you explain why bash does not exit when you type Ctrl+C on the command line?
6. Display directory stack content.

7. If it is not yet the case, set your prompt so that it displays your location in the file system hierarchy,
for instance add thislineto ~/ . bashr c:

export PS1="\u@h \w> "

8. Display hashed commands for your current shell session.

15

Bash and Bash scripts

9. How many processes are currently running on your system? Use ps and wc, the first line of output of
psis not a process!

10.How to display the system hostname? Only the name, nothing more!

16

Chapter 2. Writing and debugging
Scripts

After going through this chapter, you will be able to:

* Writeasimple script

Define the shell type that should execute the script
Put commentsin a script
Change permissions on a script

Execute and debug a script

Creating and running a script

Writing and naming

A shell script is a sequence of commands for which you have a repeated use. This sequence is typically
executed by entering the name of the script on the command line. Alternatively, you can use scripts to
automate tasks using the cron facility. Another usefor scriptsisinthe UNIX boot and shutdown procedure,
where operation of daemons and services are defined in init scripts.

To create a shell script, open anew empty filein your editor. Any text editor will do: vim, emacs, gedit,
dtpad et ceteraareall valid. Y ou might want to chose amore advanced editor like vim or emacs, however,
because these can be configured to recognize shell and Bash syntax and can be a great help in preventing
those errors that beginners frequently make, such as forgetting brackets and semi-colons.

Syntax highlighting in vim

In order to activate syntax highlighting in vim, use the command
:syntax enabl e

or

: sy enabl e

or

:syn enabl e

Y ou can add this setting to your . vi nr ¢ fileto make it permanent.

Put UNIX commandsin the new empty file, like you would enter them on the command line. As discussed
in the previous chapter (see the section called “ Executing commands”), commands can be shell functions,
shell built-ins, UNIX commands and other scripts.

Give your script a sensible name that gives a hint about what the script does. Make sure that your script
name does not conflict with existing commands. |n order to ensure that no confusion can rise, script names
oftenendin. sh; even so, there might be other scripts on your system with the same name as the one you
chose. Check using which, wher eisand other commandsfor finding information about programs and files:

whi ch -a script_nane

17

Writing and debugging scripts

wherei s script_nane

| ocate script_nane

scriptl.sh

In this example we use the echo Bash built-in to inform the user about what is going to happen, before
the task that will create the output is executed. It is strongly advised to inform users about what a script is
doing, in order to prevent them from becoming nervous because the script is not doing anything. We will
return to the subject of notifying usersin Chapter 8, Writing interactive scripts.

Figure2.1. scriptl.sh

18

Writing and debugging scripts

Write this script for yourself as well. It might be a good idea to create a directory ~/ scri pt s to hold
your scripts. Add the directory to the contents of the PATH variable:

export PATH="$PATH: ~/ scri pts"

If you are just getting started with Bash, use a text editor that uses different colours for different shell
constructs. Syntax highlighting is supported by vim, gvim, (x)emacs, kwrite and many other editors;
check the documentation of your favorite editor.

Different prompts
The prompts throughout this course vary depending on the author's mood. This resembles much

more real life situations than the standard educational $ prompt. The only convention we stick
to, isthat the root prompt ends in a hash mark (#).

Executing the script

The script should have execute permissions for the correct ownersin order to be runnable. When setting
permissions, check that you really obtained the permissions that you want. When this is done, the script
can run like any other command:

Wi lly:~/scripts> chnmod u+x scriptl.sh

Willy:~/scripts>1s -l scriptl.sh
- TWXFWAT - - 1 willy willy 456 Dec 24 17:11 scriptl.sh

willy:~> scriptl.sh
The script starts now.
H, willy!

I will now fetch you a list of connected users:

3:38pm up 18 days, 5:37, 4 users, l|oad average: 0.12, 0.22, 0.15

USER TTY FROM LOGN@ |IDLE JCPU PCPU WHAT

r oot tty2 - Sat 2pm 4:25m 0.24s 0.05s -bash

willy :0 - Sat 2pm ? 0. 00s ? -

willy pts/3 - Sat 2pm 3:33m 36.39s 36.39s BitchX wlly ir
willy pts/2 - Sat 2pm 3:33m 0.13s 0.06s /usr/bin/screen

|"msetting two vari abl es now.

This is a string: black

And this is a nunber: 9

" mgiving you back your pronpt now.
willy:~/scripts> echo $COLOUR
willy:~/scripts> echo $VALUE
willy:~/scripts>

Thisisthe most common way to execute ascript. It is preferred to execute the script like thisin asubshell.
Thevariables, functions and aliases created in this subshell are only known to the particul ar bash session of

19

Writing and debugging scripts

that subshell. When that shell exits and the parent regains control, everything is cleaned up and all changes
to the state of the shell made by the script, are forgotten.

If you did not put thescri pt s directory in your PATH, and . (the current directory) isnot in the PATH
either, you can activate the script like this:

./script_nane. sh

A script can aso explicitly be executed by a given shell, but generally we only do thisif wewant to obtain
special behavior, such as checking if the script works with another shell or printing traces for debugging:

rbash script_nane. sh
sh script_name. sh
bash -x script_nane. sh

The specified shell will start as a subshell of your current shell and execute the script. Thisis done when
you want the script to start up with specific options or under specific conditions which are not specified
in the script.

If you don't want to start anew shell but execute the script in the current shell, you sourceiit:

source script_nane. sh

source =.

The Bash sour ce built-in is a synonym for the Bourne shell . (dot) command.

The script does not need execute permission in this case. Commands are executed in the current shell
context, so any changes made to your environment will be visible when the script finishes execution:

Willy:~/scripts> source scriptl.sh
--output onmitted--

willy:~/scripts> echo $VALUE
9

willy:~/scripts>

Script basics

Which shell will run the script?

When running a script in a subshell, you should define which shell should run the script. The shell type
in which you wrote the script might not be the default on your system, so commands you entered might
result in errors when executed by the wrong shell.

Thefirst line of the script determines the shell to start. The first two characters of the first line should be
#!, then follows the path to the shell that should interpret the commands that follow. Blank lines are also
considered to be lines, so don't start your script with an empty line.

For the purpose of this course, al scripts will start with the line
#!/ bi n/ bash

As noted before, thisimplies that the Bash executable can be found in/ bi n.

20

Writing and debugging scripts

Adding comments

Y ou should be aware of the fact that you might not be the only person reading your code. A lot of users
and system administrators run scripts that were written by other people. If they want to see how you did
it, comments are useful to enlighten the reader.

Comments a so make your own life easier. Say that you had to read alot of man pagesin order to achieve
a particular result with some command that you used in your script. Y ou won't remember how it worked
if you need to change your script after afew weeks or months, unless you have commented what you did,
how you did it and/or why you did it.

Takethescri pt 1. sh example and copy it to comrent ed- scri pt 1. sh, which we edit so that the
commentsreflect what the script does. Everything the shell encountersafter ahash mark onalineisignored
and only visible upon opening the shell script file:

#1/ bi n/ bash
This script clears the terminal, displays a greeting and gives information
about currently connected users. The two exanple variables are set and di spl aye

cl ear # clear term nal w ndow

echo "The script starts now. "

echo "Hi, $USER'" # dollar sign is used to get content of variable
echo

echo "I will now fetch you a list of connected users:"

echo

w # show who is | ogged on and

echo # what they are doing

echo "I'msetting two variables now. "
COLOUR=" bl ack" # set a local shell variable
VALUE="9" # set a local shell variable

echo "This is a string: $COLOUR' # display content of variable
echo "And this is a nunber: $VALUE' # display content of variable
echo

echo "I'mgiving you back your pronpt now. "
echo

In adecent script, the first lines are usually comment about what to expect. Then each big chunk of com-
mands will be commented as needed for clarity's sake. Linux init scripts, as an example, in your system's
i nit.d directory, are usualy well commented since they have to be readable and editable by everyone
running Linux.

Debugging Bash scripts

Debugging on the entire script

When things don't go according to plan, you need to determine what exactly causesthe script to fail. Bash
provides extensive debugging features. The most common is to start up the subshell with the - x option,

21

Writing and debugging scripts

which will run the entire script in debug mode. Traces of each command plus its arguments are printed to
standard output after the commands have been expanded but before they are executed.

Thisistheconment ed- scri pt 1. sh script ran in debug mode. Note again that the added comments
are not visible in the output of the script.

Wi lly:~/scripts> bash -x scriptl.sh
+ cl ear

+ echo ' The script starts now.'
The script starts now.
+ echo "H, wlly!'

H, willy!
+ echo
+ echo 'l will now fetch you a Iist of connected users:'
I will now fetch you a list of connected users:
+ echo
+ W
4:50pm up 18 days, 6:49, 4 users, l|oad average: 0.58, 0.62, 0.40
USER TTY FROM LOGN@ |IDLE JCPU PCPU WHAT
r oot tty2 - Sat 2pm 5:36m 0.24s 0.05s -bash
willy :0 - Sat 2pm ? 0. 00s ? -
willy pts/3 - Sat 2pm 43:13 36.82s 36.82s BitchX willy ir
willy pts/2 - Sat 2pm 43:13 0.13s 0.06s /usr/bin/screen
+ echo
+ echo 'I'\'"msetting two variables now.'

|'"msetting two vari abl es now.
+ COLOUR=bI ack

+ VALUE=9

+ echo 'This is a string:
This is a string:

+ echo "And this is a nunber: '
And this is a nunber:

+ echo

+ echo 'I'"\'"'mgiving you back your pronpt now.'
" mgiving you back your pronmpt now.

+ echo

Thereis now a full-fledged debugger for Bash, available at SourceForge [http://bashdb.sourceforge.net].
These debugging features are available in most modern versions of Bash, starting from 3.x.

Debugging on part(s) of the script

Using the set Bash built-in you can run in normal mode those portions of the script of which you are sure
they are without fault, and display debugging information only for troublesome zones. Say we are not sure
what the w command will do in the example conmrent ed- scri pt 1. sh, then we could enclose it in
the script like this:

22

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net

Writing and debugging scripts

set -X # activate debugging from here
w
set +x # stop debugging from here

Output then looks like this:

willy: ~/scripts> scriptl.sh
The script starts now.

H, wlly!

I will now fetch you a list of connected users:

+ W
5:00pm up 18 days, 7:00, 4 users, |oad average: 0.79, 0.39, 0.33
USER TTY FROM LOGN@ |IDLE JCPU PCPU WHAT
r oot tty2 - Sat 2pm 5:47m 0.24s 0.05s -bash
willy :0 - Sat 2pm ? 0. 00s ? -
willy pts/3 - Sat 2pm 54: 02 36.88s 36.88s BitchX willyke
willy pts/2 - Sat 2pm 54: 02 0.13s 0.06s /usr/bin/screen
+ set +X

I'msetting two variabl es now.

This is a string:

And this is a nunber:

' m giving you back your pronpt now.
willy: ~/scripts>

Y ou can switch debugging mode on and off as many times as you want within the same script.

The table below gives an overview of other useful Bash options:

Table 2.1. Overview of set debugging options

Short notation L ong notation Result

set -f set -0 noglob Disable file name generation us-
ing metacharacters (globbing).

set -v set -0 verbose Prints shell input lines asthey are
read.

Set -X set -0 xtrace Print command traces before exe-

cuting command.

The dash is used to activate a shell option and a plus to deactivate it. Don't let this confuse you!

In the example bel ow, we demonstrate these options on the command line:

Wi lly:~/scripts> set -v

Wi lly:~/scripts>1s
I's

23

Writing and debugging scripts

comment ed- scri pts.sh scriptl.sh

willy:~/scripts> set +v
set +v

wWilly:~/scripts>1ls *
conment ed- scri pts. sh scriptl.sh

willy:~/scripts> set -f

wWilly:~/scripts>1ls *
Is: *: No such file or directory

willy:~/scripts> touch *

wWilly:~/scripts>1s
* conment ed- scri pts. sh scriptl.sh

wWilly:~/scripts>rm#*

wWilly:~/scripts>1s
conment ed- scri pts. sh scriptl.sh

Alternatively, these modes can be specified in the script itself, by adding the desired options to the first
line shell declaration. Options can be combined, asis usually the case with UNIX commands:

#!/ bi n/ bash -xv

Once you found the buggy part of your script, you can add echo statements before each command of
which you are unsure, so that you will see exactly where and why things don't work. In the example
conment ed- scri pt 1. sh script, it could be done like this, still assuming that the displaying of users
gives us problems:

echo "debug nessage: now attenpting to start w conmand"; w
In more advanced scripts, the echo can be inserted to display the content of variables at different stages

in the script, so that flaws can be detected:

echo "Variable VARNAME i s now set to $VARNAME.

Summary

A shell script is areusable series of commands put in an executable text file. Any text editor can be used
to write scripts.

Scripts start with #! followed by the path to the shell executing the commands from the script. Comments
are added to a script for your own future reference, and also to make it understandable for other users. It
is better to have too many explanations than not enough.

Debugging a script can be done using shell options. Shell options can be used for partial debugging or for
analyzing the entire script. Inserting echo commands at strategic locationsis also acommon troubl eshoot-
ing technique.

24

Writing and debugging scripts

Exercises

This exercise will help you to create your first script.

1.

Write a script using your favorite editor. The script should display the path to your homedirectory and
the terminal type that you are using. Additionally it shows all the services started up in runlevel 3 on
your system. (hint: use HOVE, TERMand Is/ et ¢/ r ¢c3. d/ S*)

. Add commentsin your script.

. Add information for the users of your script.

. Change permissions on your script so that you can run it.

. Run the script in normal mode and in debug mode. It should run without errors.

. Makeerrorsin your script: see what happensif you misspell commands, if you leave out thefirst line or

put something unintelligible there, or if you misspell shell variable names or write them in lower case
characters after they have been declared in capitals. Check what the debug comments say about this.

25

Chapter 3. The Bash environment

In this chapter we will discuss the various ways in which the Bash environment can be influenced:

Editing shell initialization files
Using variables

Using different quote styles
Perform arithmetic calculations
Assigning aliases

Using expansion and substitution

Shell initialization files

System-wide configuration files

letc/profile

Wheninvoked interactively withthe- - | ogi n option or wheninvoked assh, Bashreadsthe/ et c/ pr o-
fi | einstructions. Theseusually set the shell variablesPATH, USER, MAI L, HOSTNAME and HI STSI ZE.

On some systems, the umask value is configured in / et ¢/ pr of i | e; on other systems this file holds
pointersto other configuration files such as:

» /etc/inputrc,the system-wide Readline initialization file where you can configure the command
line bell-style.

» the/ etc/ profil e.d directory, which contains files configuring system-wide behavior of specific
programs.

All settings that you want to apply to all your users environments should be in this file. It might look
like this:

letc/profile
System wi de environnent and startup progranms, for |ogin setup
PATH=$PATH: / usr/ X11R6/ bi n

No core files by default
ulimt -S-c 0 > /dev/null 2>&1

USER=""id -un"
LOGNAME=$USER
MAI L="/ var/ spool / mai | / $USER"

HOSTNAME="/ bi n/ host nane"
H STSI ZE=1000

26

The Bash environment

Keyboard, bell, display style: the readline config file:
if [-z "$INPUTRC' -a ! -f "$HOME/.inputrc"]; then

| NPUTRC=/ et c/inputrc
fi

PS1="\u@h \W

export PATH USER LOGNAME MAI L HOSTNAME HI STSI ZE | NPUTRC PS1

Source initialization files for specific programs (Is, vim less, ...)
for i in /etc/profile.d/*.sh ; do
if [-r "$i"]; then
$
f
done

Settings for programinitialization
source /etc/java. conf
export NPX_PLUG N_PATH="$JRE_HOVE/ pl ugi n/ ns4pl ugi n/:/usr/li b/ netscape/pl ugi ns"

PAGER="/ usr/ bi n/ | ess"

unset i

This configuration file sets some basic shell environment variables as well as some variables required by
users running Java and/or Java applicationsin their web browser. See the section called “Variables’.

See Chapter 7, Conditional statementsfor more on the conditional if used in thisfile; Chapter 9, Repetitive
tasks discusses |oops such as the for construct.

The Bash source contains sample pr of i | e filesfor general or individual use. These and the one in the
exampl e above need changesin order for them to work in your environment!

letc/bashrc

On systems offering multiple types of shells, it might be better to put Bash-specific configurations in
thisfile, since/ et ¢/ profi | e isalso read by other shells, such as the Bourne shell. Errors generated
by shells that don't understand the Bash syntax are prevented by splitting the configuration files for the
different types of shells. In such cases, theuser's~/ . bashr ¢ might pointto/ et ¢/ bashr c inorder to
include it in the shell initialization process upon login.

You might also find that / et ¢/ prof i | e on your system only holds shell environment and program
startup settings, while / et ¢/ bashr ¢ contains system-wide definitions for shell functions and aliases.
The/ et ¢/ bashr c filemight bereferredtoin/ et ¢/ pr ofi | e orinindividual user shell initialization
files.

The source contains sample bashrc files, or you might find a copy in /usr/share/ doc/
bash- 2. 05b/ st art up-fil es. Thisispart of thebashr c that comeswith the Bash documentation:;

alias II1="Is -1I"
alias dir="Ils -ba'
alias c='clear'
alias Is="Is --color'

27

The Bash environment

alias nmroe='nore'
alias pdw=" pwd'

alias sl="Ils --color'
pskill ()
{

| ocal pid

pi d=$(ps -ax | grep $1 | grep -v grep | gawk '{ print $1 }")
echo -n "killing $1 (process $pid)..."

kill -9 $pid

echo "sl aughtered. ™

Apart from genera aliases, it contains useful aliases which make commands work even if you misspell
them. We will discuss aliases in the section called “Creating and removing aliases’. This file contains a
function, pskill; functions will be studied in detail in Chapter 11, Functions.

Individual user configuration files

| don't have these files?!

These files might not be in your home directory by default; create them if needed.

~/.bash_profile

Thisis the preferred configuration file for configuring user environments individually. In thisfile, users
can add extra configuration options or change default settings:

franky~> cat .bash_profile

HERHHHHH TR H T H R H R R
#
.bash_profile file
#
Executed fromthe bash shell when you |log in.
#
#

BHHABHBHABHHHHBH AR H BB B R B R R R AR H

source ~/.bashrc
source ~/.bash_login
case "$CS" in
I R X)
stty sane dec
stty erase

SunQOs)
stty erase
..
*)
stty sane

28

The Bash environment

esac

Thisuser configures the backspace character for login on different operating systems. Apart from that, the
user's. bashrc and. bash_I| ogi n areread.

~/.bash_login
Thisfile contains specific settings that are normally only executed when you log in to the system. In the

example, we use it to configure the umask value and to show a list of connected users upon login. This
user also gets the calendar for the current month:

HERHHHHH TR H T H R H T H R R
Bash_login file

commands to performfromthe bash shell at login tine
(sourced from .bash_profile)

HHHHH R
HHHHH R

HERHHHHH TR H R H R R R
file protection

umask 002 # all to me, read to group and others
m scel | aneous
w

cal “date +"%i " “date +"%""

Inthe absence of ~/ . bash_profi | e, thisfilewill beread.

~/.profile

In the absence of ~/ . bash_profil e and~/.bash_| ogin,~/.profileisread. It can hold the
same configurations, which are then also accessible by other shells. Mind that other shells might not un-
derstand the Bash syntax.

~/.bashrc

Today, itismorecommon to useanon-login shell, for instancewhen |logged in graphically using X terminal
windows. Upon opening such a window, the user does not have to provide a user name or password; no
authentication is done. Bash searches for ~/ . bashr ¢ when this happens, so it isreferred to in the files
read upon login as well, which means you don't have to enter the same settings in multiple files.

In this user's. bashr ¢ a couple of aliases are defined and variables for specific programs are set after
the system-wide/ et ¢/ bashr ¢ isread:

franky ~> cat .bashrc
[hone/ franky/ . bashrc
Source gl obal definitions
if [-f /etc/bashrc]; then

/ etc/ bashrc

fi

29

The Bash environment

shell options
set -o nocl obber
nmy shell variables

export PS1="\[\033[1;44m]\u \wA[\033[Om] "
export PATH="$PATH: ~/ bi n: ~/ scri pts"

nmy aliases

alias cdrecord="cdrecord -dev 0,0,0 -speed=8'
alias ss='ssh octarine'
alias II=1s -la'

nozilla fix

MOZI LLA_FI VE_HOME=/ usr/li b/ mozilla

LD LI BRARY_PATH=/usr/lib/mozilla:/usr/lib/mozillalplugins

MOZ DI ST BIN=/usr/lib/nmozilla

MOZ_PROGRAM=/ usr/ i b/ nozillal nozilla-bin

export MXZI LLA FI VE_HOVE LD LI BRARY_PATH MOZ_DI ST_BI N MJZ_PROGRAM

font fix
alias xt='xterm-bg black -fg white &

BitchX settings
export | RCNAMVE="fr nk"

THE END
franky ~>

More examples can be found in the Bash package. Remember that sample files might need changes in
order to work in your environment.

Aliases are discussed in the section called “Aliases’.
~/.bash_logout
This file contains specific instructions for the logout procedure. In the example, the terminal window is

cleared upon logout. Thisis useful for remote connections, which will leave a clean window after closing
them.

franky ~> cat .bash_| ogout
HERHHHHH TR H T H R H R H R

#
Bash_I| ogout file
#
commands to performfromthe bash shell at |ogout tinme
#
HERHHHHH T H T H R H T H R R
cl ear

franky ~>

30

The Bash environment

Changing shell configuration files

When making changes to any of the above files, users have to either reconnect to the system or source
the altered file for the changes to take effect. By interpreting the script this way, changes are applied to
the current shell session:

Figure 3.1. Different promptsfor different users

Most shell scripts execute in a private environment: variables are not inherited by child processes unless
they are exported by the parent shell. Sourcing a file containing shell commands is a way of applying
changes to your own environment and setting variables in the current shell.

This example also demonstrates the use of different prompt settings by different users. In this case, red
means danger. When you have a green prompt, don't worry too much.

Note that sourcer esour cefi | eisthesameas.resourcefil e.

Should you get lost in all these configuration files, and find yourself confronted with settings of which the
originisnot clear, use echo statements, just like for debugging scripts; see the section called “ Debugging
on part(s) of the script”. You might add lines like this:

echo "Now executing .bash_profile.."

or likethis:

echo "Now setting PS1 in .bashrc:"
export PS1="[sone val ue]"
echo "PS1 is now set to $PS1"

31

The Bash environment

Variables

Types of variables

As seen in the examples above, shell variables are in uppercase characters by convention. Bash keeps a
list of two types of variables:

Global variables

Global variables or environment variables are availablein all shells. The env or printenv commands can
be used to display environment variables. These programs come with the sh-utils package.

Below isatypical output:

franky ~> printenv

CC=gcc

CDPATH=. : ~: /usr/ 1 ocal : fusr:/
CFLAGS=-2 -fomt-frame-pointer
COLORTERM=gnorme-t er mi nal
CXXFLAGS=-@2 -fomt-frane-pointer
DI SPLAY=: 0

DOVAI N=hq. garrel s. be

e=

TOR=vVI

FCEDI T=vi

FlI GNORE=. 0: ~

G_BROKEN_FI LENAMVES=1
GDK_USE_XFT=1

GDVBESSI ON=Def aul t
GNOVE_DESKTOP_SESSI ON_| D=Def aul t
GTK_RC FI LES=/etc/ gt k/ gtkrc:/nethome/franky/.gtkrc-1.2-gnonme2
GAMCOLOR=dar kgr een

GAMIERMEXt er m

HI STFI LESI ZE=5000

hi st ory_cont r ol =i gnor edups

HI STSI ZE=2000

HOME=/ net hone/ f r anky

HOSTNAME=0ct ar i ne. hg. garrel s. be

| NPUTRC=/ et c/inputrc

| RCNAME=f r anky

JAVA HOVE=/ usr/javal/j2sdkl.4.0
LANG=en_US

LDFLAGS=-s

LD LI BRARY_PATH=/usr/Ilib/mozilla:/usr/lib/mozillalplugins
LESSCHARSET=I ati nl

LESS=- edf MQ

LESSOPEN=| / usr/ bi n/ | esspi pe. sh %
LEX=f | ex

LOCAL_MACHI NE=oct ari ne

LOGNANVE=f r anky

LS COLORS=n0=00: fi =00: di =01; 34: | n=01; 36: pi =40; 33: s0=01; 35: bd=40; 33; 01: cd=40; 33; 01:

32

The Bash environment

MACHI NES=oct ari ne

VAl LCHECK=60

MAI L=/ var/ mai | / f r anky

MANPATH=/ usr/ man: / usr/ share/ man/ :/usr/ | ocal / man: /usr/ X11R6/ man
MEAN MACHI NES=oct ari ne

MOZ DI ST BIN=/usr/lib/nmozilla

MXZI LLA_FI VE_HOVE=/ usr/li b/ nozill a

MOZ_PROGRAM=/ usr/ i b/ nozillal/ nmozill a-bin

MIOOLS_FAT_COVPATI BI LI TY=1

MYMALLCOC=0

NNTPPORT=119

NNTPSERVER=news

NPX_PLUGQ N_PATH=/ pl ugi n/ ns4pl ugi n/ :/usr/1i b/ net scape/ pl ugi ns
OLDPWD=/ net homre/ f r anky

OS=Li nux

PACER=I ess

PATH=/ net home/ f r anky/ bi n. Li nux: / net home/ f ranky/ bi n: /usr/ 1 ocal / bi n: /usr/1 ocal / shi n:
PS1=\[\033[1;44m]franky is in \W[\033[0m]

PS2=Mor e i nput >

PWD=/ net hone/ f r anky

SESSI ON_ MANAGER=I ocal / oct ari ne. hg. garrel s. be:/tnp/ .| CE-uni x/ 22106
SHELL=/ bi n/ bash

SHELL_LOG N=--1o0gin

SHLVL=2

SSH_AGENT_PI D=22161

SSH _ASKPASS=/ usr /| i bexec/ openssh/ gnone- ssh- askpass

SSH _AUTH_SOCK=/t np/ ssh- XXmhQ4f C/ agent . 22106

START_WVEt wm

TERMEXt erm

TYPE=t ype

USERNAME=f r anky

USER=f r anky

_=/usr/bin/printenv

VI SUAL=VI

W NDOW D=20971661

XAPPLRESDI R=/ net hone/ f r anky/ app- defaul t s

XAUTHORI TY=/ net hone/ f ranky/ . Xaut hority

XENVI RONMENT=/ net hone/ f ranky/ . Xdef aul t s

XFI LESEARCHPATH=/ usr/ X11R6/ | i b/ X11/ 9./ %/ YNVACYS: / usr/ XL1R6/ |1 b/ X11/ % / %I/ YNACYS: / u
XKEYSYNMDB=/ usr/ X11R6/ | i b/ X11/ XKeysynDB

XMODI FI ERS=@ m=none

XTERM D=

XW NHOVE=/ usr / X11R6

X=X11R6

YACC=bi son -y

Local variables

Local variables are only availablein the current shell. Using the set built-in command without any options
will display alist of al variables (including environment variables) and functions. The output will be
sorted according to the current locale and displayed in areusable format.

Below isadiff file made by comparing printenv and set output, after leaving out the functions which are
also displayed by the set command:

33

The Bash environment

franky ~> diff set.sorted printenv.sorted | grep "<" | awk '{ print $2 }'
BASE=/ net home/ franky/ . Shel I / hg. garrel s. be/ octarine. al i ases
BASH=/ bi n/ bash

BASH VERSI NFO=([0] =" 2"

BASH VERSI ON=' 2. 05b. 0(1) -r el ease'

COLUWMNS=80

DI RSTACK=()

DO_FORTUNE=

EUl D=504

GROUPS=()

HERE=/ hone/ f r anky

Hl STFI LE=/ net hone/ f r anky/ . bash_hi story

HOSTTYPE=i 686

| FS=$'

LI NES=24

MACHTYPE=i 686- pc-| i nux- gnu

OPTERR=1

OPTI ND=1

OSTYPE=I i nux-gnu

Pl PESTATUS=([0] ="0")

PPl D=10099

PS4=" +

PWD_REAL=' pwd

SHELLOPTS=br aceexpand: emacs: hashal | : hi st expand: hi story:interactive-conments: nonito
THERE=/ hone/ f r anky

U D=504

Awk

the GNU Awk programming language is explained in Chapter 6, The GNU awk programming
language.

Variables by content

Apart from dividing variablesin local and global variables, we can a so dividethem in categories according
to the sort of content the variable contains. In this respect, variables comein 4 types:

 String variables
* Integer variables
+ Constant variables
» Array variables

WEe'll discuss these typesin Chapter 10, More on variables. For now, we will work with integer and string
valuesfor our variables.

Creating variables

Variables are case sensitive and capitalized by default. Giving local variables alowercase nameis a con-
vention which is sometimes applied. However, you are free to use the names you want or to mix cases.
Variables can also contain digits, but a name starting with adigit is not allowed:

The Bash environment

pronpt > export lnunber=1
bash: export: “lnumber=1': not a valid identifier

To set avariable in the shell, use
VARNAME="val ue"

Putting spaces around the equal sign will cause errors. It is a good habit to quote content strings when
assigning valuesto variables: thiswill reduce the chance that you make errors.

Some examples using upper and lower cases, numbers and spaces:

franky ~> MyVARL1="2"

franky ~> echo $MYVARL
2

franky ~> first_name="Franky"

franky ~> echo $first_nane
Fr anky

franky ~> full _name="Franky M Singh"

franky ~> echo $full_nane
Franky M Si ngh

franky ~> MyVAR-2="2"
bash: MYVAR-2=2: conmand not found

franky ~> MyVARL ="2"
bash: MYVARL: command not found

franky ~> MYVARL= "2"
bash: 2: command not found

franky ~> unset MYVARL first_nanme full _name

franky ~> echo $MYVARL $first_name $ful | _nane
<--no output-->

franky ~>

Exporting variables

A variable created like the ones in the example above is only available to the current shell. It is alocal
variable: child processes of the current shell will not be aware of this variable. In order to pass variables
to asubshell, we need to export them using the export built-in command. Variables that are exported are
referred to as environment variables. Setting and exporting is usually donein one step:

export VARNAME="val ue"

A subshell can change variablesit inherited from the parent, but the changes made by the child don't affect
the parent. Thisis demonstrated in the example:

35

The Bash environment

franky ~> full _name="Franky M Singh"
franky ~> bash

franky ~> echo $full _nane

franky ~> exit
franky ~> export full_nane
franky ~> bash

franky ~> echo $full_nane
Franky M Si ngh

franky ~> export full_nane="Charles the Geat"

franky ~> echo $full_nane
Charles the G eat

franky ~> exit

franky ~> echo $full_nane
Franky M Si ngh

franky ~>
When first trying to read the value of f ul | _name inasubshell, it is not there (echo shows anull string).
The subshell quits, and f ul | _nane isexported in the parent - avariable can be exported after it has been

assigned avalue. Then anew subshell is started, in which the variable exported from the parent isvisible.
The variableis changed to hold another name, but the value for this variable in the parent stays the same.

Reserved variables

Bourne shell reserved variables

Bash uses certain shell variablesin the same way asthe Bourne shell. In some cases, Bash assigns adefault
valueto the variable. The table below gives an overview of these plain shell variables:

Table 3.1. Reserved Bour ne shell variables

Variable name Definition

CDPATH A colon-separated list of directories used as a
search path for the cd built-in command.

HOME The current user's home directory; the default for
the cd built-in. The value of thisvariableis also
used by tilde expansion.

IFS A list of charactersthat separate fields; used when
the shell splits words as part of expansion.

36

The Bash environment

Variable name

Definition

MAIL If this parameter is set to afile name and the
MAI LPATH variable is not set, Bash informs the
user of the arrival of mail in the specified file.

MAILPATH A colon-separated list of file names which the
shell periodically checksfor new mail.

OPTARG The value of the last option argument processed by
the getopts built-in.

OPTIND Theindex of the last option argument processed by
the getopts built-in.

PATH A colon-separated list of directoriesin which the
shell looks for commands.

PS1 The primary prompt string. The default valueis
“\s\W\S ",

pPSs2 The secondary prompt string. The default valueis

Wiy m

Bash reserved variables

These variables are set or used by Bash, but other shells do not normally treat them specially.

Table 3.2. Reserved Bash variables

Variable name

Definition

auto_resume Thisvariable controls how the shell interacts with
the user and job control.

BASH The full pathname used to execute the current in-
stance of Bash.

BASH_ENV If thisvariable is set when Bash isinvoked to exe-

cute ashell script, its value is expanded and used
as the name of a startup file to read before execut-
ing the script.

BASH_VERSION

The version number of the current instance of
Bash.

BASH_VERSINFO

A read-only array variable whose members hold
version information for this instance of Bash.

COLUMNS

Used by the select built-in to determine the termi-
nal width when printing selection lists. Automati-
cally set upon receipt of a SGWINCH signal.

COMP_CWORD

Anindex into ${ COVP_WORDS} of the word con-
taining the current cursor position.

COMP_LINE The current command line.

COMP_POINT Theindex of the current cursor position relative to
the beginning of the current command.

COMP_WORDS An array variable consisting of the individual

words in the current command line.

37

The Bash environment

Variable name

Definition

COMPREPLY An array variable from which Bash reads the pos-
sible completions generated by a shell function in-
voked by the programmable completion facility.

DIRSTACK An array variable containing the current contents
of the directory stack.

EUID The numeric effective user ID of the current user.

FCEDIT The editor used as a default by the - e option to the
fc built-in command.

FIGNORE A colon-separated list of suffixes to ignore when
performing file name completion.

FUNCNAME The name of any currently-executing shell func-
tion.

GLOBIGNORE A colon-separated list of patterns defining the set
of file names to be ignored by file name expan-
sion.

GROUPS An array variable containing the list of groups of
which the current user isa member.

histchars Up to three characters which control history ex-
pansion, quick substitution, and tokenization.

HISTCMD The history number, or index in the history list, of
the current command.

HISTCONTROL Defines whether acommand is added to the histo-
ry file.

HISTFILE The name of the file to which the com-
mand history is saved. The default valueis
~/ . bash_hi story.

HISTFILESIZE The maximum number of lines contained in the
history file, defaults to 500.

HISTIGNORE A colon-separated list of patterns used to decide
which command lines should be saved in the histo-
ry list.

HISTSIZE The maximum number of commands to remember
on the history list, default is 500.

HOSTFILE Contains the name of afilein the same format as
/ et c/ host s that should be read when the shell
needs to compl ete a hostname.

HOSTNAME The name of the current host.

HOSTTY PE A string describing the machine Bash is running
on.

IGNOREEOF Controls the action of the shell on receipt of an
EOF character asthe sole input.

INPUTRC The name of the Readline initialization file, over-

riding thedefault / et ¢/ i nputr c.

38

The Bash environment

Variable name

Definition

LANG

Used to determine the locale category for any cate-
gory not specifically selected with avariable start-
ingwith LC .

LC_ALL

This variable overrides the value of LANG and any
other LC_ variable specifying alocale category.

LC_COLLATE

This variable determines the collation order used
when sorting the results of file name expansion,
and determines the behavior of range expressions,
equivalence classes, and collating sequences with-
in file name expansion and pattern matching.

LC CTYPE

This variable determines the interpretation of char-
acters and the behavior of character classes within
file name expansion and pattern matching.

LC_MESSAGES

This variable determines the local e used to trans-
late double-quoted strings preceded by a“$” sign.

LC_NUMERIC

This variable determines the locale category used
for number formatting.

LINENO

The line number in the script or shell function cur-
rently executing.

LINES

Used by the select built-in to determine the col-
umn length for printing selection lists.

MACHTY PE

A string that fully describes the system type on
which Bash is executing, in the standard GNU
CPU-COMPANY-SY STEM format.

MAILCHECK

How often (in seconds) that the shell should check
for mail in the files specified in the MAI LPATH or
MAI L variables.

OLDPWD

The previous working directory as set by the cd
built-in.

OPTERR

If set to the value 1, Bash displays error messages
generated by the getopts built-in.

OSTYPE

A string describing the operating system Bash is
running on.

PIPESTATUS

An array variable containing alist of exit status
values from the processes in the most recently exe-
cuted foreground pipeline (which may contain on-
ly asingle command).

POSIXLY_CORRECT

If thisvariable is in the environment when bash
starts, the shell enters POSIX mode.

PPID

The process ID of the shell's parent process.

PROMPT_COMMAND

If set, the value isinterpreted as a command to ex-
ecute before the printing of each primary prompt
(PS1).

PS3

The value of thisvariable is used as the prompt for
the select command. Defaultsto “'#? "

39

The Bash environment

Variable name

Definition

PS4

The value is the prompt printed before the com-
mand line is echoed when the - x option is set; de-
faultsto “'+ ™.

PWD

The current working directory as set by the cd
built-in command.

RANDOM

Each time this parameter is referenced, arandom
integer between 0 and 32767 is generated. Assign-
ing avalue to this variable seeds the random num-
ber generator.

REPLY

The default variable for the read built-in.

SECONDS

This variable expands to the number of seconds
since the shell was started.

SHELLOPTS

A colon-separated list of enabled shell options.

SHLVL

Incremented by one each time a new instance of
Bash is started.

TIMEFORMAT

The value of this parameter is used as a format
string specifying how the timing information for
pipelines prefixed with the time reserved word
should be displayed.

TMOUT

If set to avalue greater than zero, TMOUT is treat-
ed as the default timeout for the read built-in. In
an interative shell, the valueis interpreted as the
number of secondsto wait for input after issuing
the primary prompt when the shell isinteractive.
Bash terminates after that number of seconds if in-
put does not arrive.

ulbD

The numeric, real user ID of the current user.

Check the Bash man, info or doc pages for extended information. Some variables are read-only, some are
set automatically and some lose their meaning when set to a different value than the defaullt.

Special parameters

The shell treats several parameters specially. These parameters may only be referenced; assignment to

them is not allowed.

Table 3.3. Special bash variables

Char acter

Definition

$*

Expands to the positional parameters, starting from
one. When the expansion occurs within double
guotes, it expands to a single word with the value
of each parameter separated by the first character
of the | FS special variable.

$@

Expands to the positional parameters, starting from
one. When the expansion occurs within double
guotes, each parameter expands to a separate word.

40

The Bash environment

Character Definition

$# Expands to the number of positional parametersin
decimal.

$? Expands to the exit status of the most recently exe-

cuted foreground pipeline.

$- A hyphen expands to the current option flags as
specified upon invocation, by the set built-in com-
mand, or those set by the shell itself (such asthe -

i).

$$ Expands to the process ID of the shell.

$! Expands to the process ID of the most recently ex-
ecuted background (asynchronous) command.

$0 Expands to the name of the shell or shell script.

$ The underscore variable is set at shell startup and

contains the absol ute file name of the shell or
script being executed as passed in the argument
list. Subsequently, it expands to the last argument
to the previous command, after expansion. It isal-
so set to the full pathname of each command ex-
ecuted and placed in the environment exported to
that command. When checking mail, this parame-
ter holds the name of the mail file.

$* vs. $@

The implementation of “$*” has always been a problem and realistically should have been re-
placed with the behavior of “$@" . In amost every case where codersuse “$*”, they mean “$@" .
“$*” Can cause bugs and even security holesin your software.

The positional parameters are the words following the name of ashell script. They are put into the variables
$1, $2, $3 and so on. As long as needed, variables are added to an internal array. $# holds the total
number of parameters, as is demonstrated with this simple script:

#! / bi n/ bash

positional.sh
This script reads 3 positional paraneters and prints them out.

POSPARL="$1"
POSPAR2="$2"
POSPAR3="$3"

echo "$1 is the first positional paraneter, \$1."

echo "$2 is the second positional paraneter, \$2."

echo "$3 is the third positional paraneter, \$3."

echo

echo "The total nunber of positional parameters is $#. "

Upon execution one could give any numbers of arguments:

41

The Bash environment

franky ~> positional.sh one two three four five
one is the first positional parameter, $1.

two is the second positional paraneter, $2.
three is the third positional parameter, $3.

The total nunber of positional paraneters is 5.
franky ~> positional.sh one two
one is the first positional parameter, $1.
two is the second positional paraneter, $2.
is the third positional paranmeter, $3.

The total nunber of positional paraneters is 2.

More on evaluating these parametersisin Chapter 7, Conditional statements and the section called “ The
shift built-in".

Some exampl es on the other special parameters:
franky ~> grep dictionary /usr/share/dict/words
di ctionary

franky ~> echo $_
/usr/share/ di ct/words

franky ~> echo $$
10662

franky ~> nozilla &
[1] 11064

franky ~> echo $!
11064

franky ~> echo $0
bash

franky ~> echo $?
0

franky ~> |'s doesnot exi st
| s: doesnotexist: No such file or directory

franky ~> echo $?
1

franky ~>

User franky starts entering the grep command, which results in the assignment of the _ variable. The
process ID of his shell is 10662. After putting a job in the background, the! holds the process ID of the
backgrounded job. The shell running is bash. When a mistake is made, ? holds an exit code different
from O (zero).

42

The Bash environment

Script recycling with variables

Apart from making the script more readable, variables will also enable you to faster apply a script in
another environment or for another purpose. Consider the following example, a very simple script that
makes a backup of franky's home directory to aremote server:

#1/ bi n/ bash
This script makes a backup of my hone directory.
cd / hone

This creates the archive
tar cf /var/tnp/honme_franky.tar franky > /dev/null 2>&1

First remove the old bzip2 file. Redirect errors because this generates some if
does not exist. Then create a new conpressed file.

rm/var/tnp/ honme_franky.tar.bz2 2> /dev/null

bzi p2 /var/tnp/ home_franky.tar

Copy the file to another host - we have ssh keys for naking this work w thout in
scp /var/tnp/ home_franky. tar.bz2 bordeaux:/opt/backup/franky > /dev/null 2>&1

Create a tinestanp in a logfile.
date >> /hone/franky/| og/ home_backup. | og
echo backup succeeded >> /homne/franky/| og/ home_backup. | og

First of all, you are more likely to make errors if you name files and directories manually each time you
need them. Secondly, suppose franky wants to give this script to carol, then carol will have to do quite
some editing before she can use the script to back up her home directory. The sameistrueif franky wants
to use this script for backing up other directories. For easy recycling, make all files, directories, usernames,
servernames etcetera variable. Thus, you only need to edit a value once, without having to go through the
entire script to check where a parameter occurs. Thisis an example:

#1/ bi n/ bash
This script makes a backup of my honme directory.

Change the values of the variables to nmake the script work for you:
BACKUPDI R=/ hore

BACKUPFI LES=f r anky

TARFI LE=/ var/ t np/ hone_franky. t ar

BZI PFI LE=/ var/ t np/ home_franky.tar. bz2

SERVER=bor deaux

REMOTEDI R=/ opt / backup/ f r anky

LOGFI LE=/ home/ f r anky/ | og/ home_backup. | og

cd $BACKUPDI R

This creates the archive
tar cf $TARFI LE $BACKUPFI LES > /dev/null 2>&1

43

The Bash environment

First remove the old bzip2 file. Redirect errors because this generates some if
does not exist. Then create a new conpressed file.

rm $BZI PFI LE 2> /dev/ nul |

bzi p2 $TARFI LE

Copy the file to another host - we have ssh keys for naking this work without in
scp $BZI PFI LE $SERVER: $REMOTEDI R > /dev/ nul | 2>&1

Create a tinestanp in a logfile.
date >> $LOGFI LE
echo backup succeeded >> $LOGFI LE

Largedirectoriesand low bandwidth

Theaboveispurely an examplethat everybody can understand, using asmall directory and ahost
on the same subnet. Depending on your bandwidth, the size of the directory and the location of the
remote server, it can take an awful lot of time to make backups using this mechanism. For larger
directories and lower bandwidth, use r sync to keep the directories at both ends synchronized.

Quoting characters
Why?

A lot of keys have special meaningsin some context or other. Quoting is used to remove the special mean-
ing of characters or words: quotes can disable special treatment for specia characters, they can prevent
reserved words from being recognized as such and they can disable parameter expansion.

Escape characters

Escape characters are used to remove the special meaning from asingle character. A non-quoted backslash,
\, is used as an escape character in Bash. It preserves the literal value of the next character that follows,
with the exception of newline. If a newline character appears immediately after the backslash, it marks
the continuation of aline when it is longer that the width of the terminal; the backslash is removed from
the input stream and effectively ignored.

franky ~> date=20021226

franky ~> echo $date
20021226

franky ~> echo \ $date
$dat e

In this example, the variable dat e is created and set to hold avalue. The first echo displays the value of
the variable, but for the second, the dollar sign is escaped.

Single quotes

Single quotes (") are used to preserve the literal value of each character enclosed within the quotes. A
single quote may not occur between single quotes, even when preceded by a backsl ash.

We continue with the previous example:

The Bash environment

franky ~> echo ' $date’
$dat e

Double quotes

Using double quotesthe literal value of al characters enclosed is preserved, except for the dollar sign, the
backticks (backward single quotes, ™) and the backslash.

The dollar sign and the backticks retain their special meaning within the double quotes.

The backslash retains its meaning only when followed by dollar, backtick, double quote, backslash or
newline. Within double quotes, the backslashes are removed from the input stream when followed by one
of these characters. Backslashes preceding charactersthat don't have a special meaning areleft unmodified
for processing by the shell interpreter.

A double quote may be quoted within double quotes by preceding it with a backslash.

franky ~> echo "$date"
20021226

franky ~> echo " "date "
Sun Apr 20 11:22:06 CEST 2003

franky ~> echo "I'd say: \"Go for it!t\""
I'd say: "Go for it!"

franky ~> echo "\"
Mor e i nput >"

franky ~> echo "\\"
\

ANSI-C quoting
Words in the form “$'STRING" are treated in a special way. The word expands to a string, with back-

slash-escaped characters replaced as specified by the ANSI-C standard. Backslash escape sequences can
be found in the Bash documentation.

Locales
A double-quoted string preceded by a dollar sign will cause the string to be translated according to the

current locale. If the current localeis“C” or “POSIX”, the dollar sign isignored. If the string is translated
and replaced, the replacement is double-quoted.

Shell expansion

General

After the command has been split into tokens (see the section called “ Shell syntax”), these tokens or words
are expanded or resolved. There are eight kinds of expansion performed, which wewill discussin the next
sections, in the order that they are expanded.

45

The Bash environment

After al expansions, quote removal is performed.

Brace expansion

Brace expansion isamechanism by which arbitrary strings may be generated. Patternsto be brace-expand-
ed take the form of an optional PREAMBLE, followed by a series of comma-separated strings between a
pair of braces, followed by an optional POSTSCRIPT. The preamble is prefixed to each string contained
within the braces, and the postscript is then appended to each resulting string, expanding |eft to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order

ispreserved:
franky ~> echo sp{el,il,al}l
spell spill spall

Brace expansion is performed before any other expansions, and any characters special to other expansions
are preserved in the result. It is strictly textual. Bash does not apply any syntactic interpretation to the
context of the expansion or the text between the braces. To avoid conflicts with parameter expansion, the
string “${” is not considered eligible for brace expansion.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at |east one
unquoted comma. Any incorrectly formed brace expansion is left unchanged.

Tilde expansion

If aword begins with an unquoted tilde character (“~"), al of the characters up to the first unquoted slash
(or al characters, if thereisno unquoted slash) are considered atilde-prefix. If none of the charactersin the
tilde-prefix are quoted, the charactersin the tilde-prefix following the tilde are treated as a possible login
name. If thislogin name isthe null string, the tilde is replaced with the value of the HOVE shell variable.
If HOVE is unset, the home directory of the user executing the shell is substituted instead. Otherwise, the
tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is “~+", the value of the shell variable PVD replaces the tilde-prefix. If the tilde-prefix
is“~-", the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following thetilde in the tilde-prefix consist of anumber N, optionally prefixed by a“+”
ora“-", thetilde-prefix isreplaced with the corresponding el ement from the directory stack, asit would be
displayed by the dir sbuilt-in invoked with the charactersfollowing tilde in the tilde-prefix as an argument.
If the tilde-prefix, without the tilde, consists of a number without aleading “+” or “-”, “+” is assumed.

If thelogin nameisinvalid, or the tilde expansion fails, the word isleft unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following a“:” or “=". In
these cases, tilde expansion is a so performed. Consequently, one may usefile nameswith tildesin assign-
ments to PATH, MAI LPATH, and CDPATH, and the shell assigns the expanded value.

Example:

franky ~> export PATH="$PATH. ~/testdir"

~/ t est di r will be expandedto $HOVE/ t est di r, soif $HOVE is/ var / hone/ f r anky, the direc-
tory / var / home/ f ranky/ t est di r will be added to the content of the PATH variable.

46

The Bash environment

Shell parameter and variable expansion

The “$” character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to
protect the variable to be expanded from characters immediately following it which could be interpreted
as part of the name.

When braces are used, the matching ending brace is the first “}” not escaped by a backslash or within
a quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

The basic form of parameter expansion is “${ PARAMETER}”. The value of “PARAMETER” is substi-
tuted. The braces are required when “PARAMETER” is a positional parameter with more than one digit,
or when “PARAMETER” isfollowed by a character that is not to be interpreted as part of its name.

If the first character of “PARAMETER” is an exclamation point, Bash uses the value of the variable
formed from the rest of “PARAMETER” as the name of the variable; this variable is then expanded and
that value is used in the rest of the substitution, rather than the value of “PARAMETER” itself. Thisis
known as indirect expansion.

You are certainly familiar with straight parameter expansion, since it happens all the time, even in the
simplest of cases, such as the one above or the following:

franky ~> echo $SHELL
/ bi n/ bash

The following is an example of indirect expansion:

franky ~> echo ${! N}

NNTPPORT NNTPSERVER NPX_PLUGQ N_PATH

Note that thisis not the same as echo $N* .

The following construct allows for creation of the named variable if it does not yet exist:
${ VAR =val ue}

Example:

franky ~> echo $FRANKY

franky ~> echo ${FRANKY: =Fr anky}
Fr anky

Specia parameters, among others the positional parameters, may not be assigned this way, however.

We will further discuss the use of the curly braces for treatment of variables in Chapter 10, More on
variables. More information can also be found in the Bash info pages.

Command substitution

Command substitution allows the output of a command to replace the command itself. Command substi-
tution occurs when a command is enclosed like this:

47

The Bash environment

$(conmmand)
or like this using backticks:
*conmand’

Bash performs the expansion by executing COMMAND and replacing the command substitution with the
standard output of the command, with any trailing newlines deleted. Embedded newlines are not deleted,
but they may be removed during word splitting.

franky ~> echo “date’
Thu Feb 6 10:06: 20 CET 2003

When the old-style backquoted form of substitution is used, backslash retains its literal meaning except
whenfollowed by “$”, “™, or “\". Thefirst backticks not preceded by abackslash terminates the command
substitution. When using the “$(COMMAND)” form, all characters between the parentheses make up the
command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escapetheinner backticks
with backslashes.

If the substitution appears within double quotes, word splitting and file name expansion are not performed
on the results.

Arithmetic expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:

$((EXPRESSION))

The expression is treated as if it were within double quotes, but a double quote inside the parentheses is
not treated specially. All tokens in the expression undergo parameter expansion, command substitution,
and quote removal. Arithmetic substitutions may be nested.

Evaluation of arithmetic expressionsisdone in fixed-width integers with no check for overflow - although
division by zero is trapped and recognized as an error. The operators are roughly the same asin the C
programming language. In order of decreasing precedence, the list looks like this:

Table 3.4. Arithmetic operators

Operator M eaning

VAR++ and VAR-- variable post-increment and post-decrement
++VAR and --VAR variable pre-increment and pre-decrement
-and + unary minus and plus

l'and ~ logical and bitwise negation

o exponentiation

*, [and % multiplication, division, remainder

+and - addition, subtraction

<<and>> left and right bitwise shifts

<=,>=,<and> comparison operators

48

The Bash environment

Operator M eaning

==and!= equality and inequality

& bitwise AND

A bitwise exclusive OR

| bitwise OR

&& logical AND

Il logical OR

expr ? expr : expr conditional evaluation

=, *= =, %=, +=, -2, <<=, 55>, &=, M=and = assignments

, separator between expressions

Shell variables are allowed as operands; parameter expansion is performed before the expression is eval-
uated. Within an expression, shell variables may also be referenced by name without using the parameter
expansion syntax. The value of avariable is evaluated as an arithmetic expression when it is referenced.
A shell variable need not have its integer attribute turned on to be used in an expression.

Constants with aleading O (zero) are interpreted as octal numbers. A leading “0x” or “0X” denotes hexa
decimal. Otherwise, numbers take the form “[BASE#]N", where “BASE” is a decima number between
2 and 64 representing the arithmetic base, and N is a number in that base. If “BASE'#" is omitted, then
base 10 is used. The digits greater than 9 are represented by the lowercase letters, the uppercase |etters,
“@",and“_", inthat order. If “BASE” islessthan or equal to 36, lowercase and uppercase |etters may be
used interchangably to represent numbers between 10 and 35.

Operatorsare evaluated in order of precedence. Sub-expressionsin parentheses are eval uated first and may
override the precedence rules above.

Wherever possible, Bash users should try to use the syntax with square brackets:
$[EXPRESSI ON]

However, thiswill only calculate the result of EXPRESSON, and do no tests:
franky ~> echo $[365*24]

8760

See the section called “Numeric comparisons’, among others, for practical examplesin scripts.

Process substitution

Process substitution is supported on systems that support named pipes (FIFOs) or the/ dev/ f d method
of naming open files. It takes the form of

<(LI ST)
or
>(LI ST)

TheprocessLI ST isrunwithitsinput or output connected to aFIFO or somefilein/ dev/ f d. Thename
of thisfileispassed as an argument to the current command asthe result of the expansion. If the“>(LIST)”

49

The Bash environment

Word

formisused, writing to the filewill provideinput for L1 ST. If the“<(LIST)” form is used, thefile passed
as an argument should be read to obtain the output of LI ST. Note that no space may appear between the
< or > signs and the left parenthesis, otherwise the construct would be interpreted as a redirection.

When available, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

Moreinformation in the section called “Redirection and file descriptors’.
splitting

The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that
did not occur within double quotes for word splitting.

The shell treats each character of $I FS as a delimiter, and splits the results of the other expansions into
words on these characters. If | FSisunset, or itsvalueis exactly “'<space><tab><newline>", the defaullt,
then any sequence of | FS characters serves to delimit words. If | FS has a value other than the default,
then sequences of the whitespace characters “space” and “Tab” are ignored at the beginning and end of
the word, as long as the whitespace character isin the value of | FS (an | FS whitespace character). Any
character in | FS that is not | FS whitespace, along with any adjacent | F whitespace characters, delimits
afield. A sequence of | FS whitespace charactersis also treated as adelimiter. If thevalue of | FSisnull,
no word splitting occurs.

Explicit null arguments (“""” or “") are retained. Unquoted implicit null arguments, resulting from the

expansion of parametersthat have no values, are removed. If aparameter with no valueis expanded within
double quotes, a null argument results and is retained.

Expansion and word splitting

If no expansion occurs, no splitting is performed.

File name expansion

After word splitting, unlessthe - f option has been set (see the section called “ Debugging on part(s) of the
script”), Bash scans each word for the characters“*”, “?”, and “[”. If one of these characters appears, then
theword isregarded asa PATTERN, and replaced with an alphabetically sorted list of file names matching
the pattern. If no matching file names are found, and the shell option nul | gl ob is disabled, the word
isleft unchanged. If the nul | gl ob option is set, and no matches are found, the word is removed. If the
shell option nocasegl ob is enabled, the match is performed without regard to the case of alphabetic
characters.

When apattern is used for file name generation, the character “.” at the start of afile name or immediately
following a slash must be matched explicitly, unless the shell option dot gl ob is set. When matching a
file name, the dlash character must always be matched explicitly. In other cases, the “.” character is not
treated specially.

The GLOBI GNORE shell variable may be used to restrict the set of file names matching a pattern. If
GLOBI GNORE is set, each matching file name that also matches one of the patterns in GLOBI GNORE is
removed from the list of matches. Thefilenames. and. . areawaysignored, even when GLOBI GNORE
is set. However, setting GLOBI GNORE has the effect of enabling the dot gl ob shell option, so all other
file names beginning with a“.” will match. To get the old behavior of ignoring file names beginning with a
“.”, make".*” oneof the patternsin GLOBI GNORE. Thedot gl ob optionisdisabled when GLOBI GNORE
IS unset.

50

The Bash environment

Aliases

What are aliases?

An aliasalowsastring to be substituted for aword when it is used as thefirst word of asimple command.
Theshell maintainsalist of aliasesthat may be set and unset with the alias and unalias built-in commands.
Issue the alias without options to display alist of aliases known to the current shell.

franky: ~> alias

alias ..='cd ..'
alias ...="¢cd ../.."
alias='¢cd ../../.."'

alias PAGER='less -r'

alias Txterms export TERMexterm

al i as XARGS=' xargs -r'

alias cdrecord="'cdrecord -dev 0,0,0 -speed=8'
alias e="vi'

alias egrep='grep -E

alias ewformat="fdformat -n /dev/fdOul743; ewfsck'
alias fgrep="grep -F

alias ftp="ncftp -di5'

alias h="history 10

alias fformat="fdf ormat /dev/fdOH1440
alias j="jobs -1

alias ksane='setterm -reset’

alias Is='Is -F --col or=aut o'

alias n¥' | ess’

alias md=" nkdir'

alias od="od -Ax -ta -txC

alias p='"pstree -p'

alias ping="ping -vcl

al i as sb='ssh bl ubber’

alias sl=1s'

alias ss='ssh octarine'

alias tar="gtar'

alias tnp="cd /tnp'

alias unaliasall="unalias -a'

alias vi="eval “resize ;vi'

alias vt100="export TERM=vt 100

al i as whi ch="type'

alias xt='xterm-bg black -fg white &

franky ~>

Aliases are useful for specifying the default version of a command that existsin several versions on your
system, or to specify default options to a command. Another use for aliases is for correcting incorrect

spelling.

Thefirst word of each simple command, if unquoted, is checked to seeif it hasan dlias. If so, that word is
replaced by thetext of the alias. The alias name and the replacement text may contain any valid shell input,
including shell metacharacters, with the exception that the alias name may not contain “=". Thefirst word
of the replacement text is tested for aliases, but aword that is identical to an alias being expanded is not

51

The Bash environment

expanded a second time. This means that one may dias|sto Is- F, for instance, and Bash will not try to
recursively expand the replacement text. If the last character of the alias value is a space or tab character,
then the next command word following the aliasis also checked for alias expansion.

Aliases are not expanded when the shell is not interactive, unless the expand_al i ases option is set
using the shopt shell built-in.

Creating and removing aliases

Aliases are created using the alias shell built-in. For permanent use, enter the alias in one of your shell
initialization files; if you just enter the alias on the command lineg, it is only recognized within the current
shell.

franky ~> alias dh="df -h'

franky ~> dh

Fi | esystem Size Used Avail Use% Mounted on
/ dev/ hda7 1.3G 272M 1018M 22%/

/ dev/ hdal 121M 9.4M 105M 9%/ boot

/ dev/ hda2 13G 8.7G 3.7G 70%/hone

/ dev/ hda3 13G 5.3G 7.1G 43%/ opt

none 243M 0 243M 0% /dev/shm

/ dev/ hda6 3.9G 3.2G 572M 85% / usr

/ dev/ hda5 5.2G 4.3G 725M 86% /var

franky ~> unalias dh

franky ~> dh
bash: dh: command not found

franky ~>

Bash always reads at |east one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input isread. The
commandsfollowing the alias definition on that line are not affected by the new alias. Thisbehavior isalso
an issue when functions are executed. Aliases are expanded when a function definition is read, not when
the function is executed, because a function definition isitself acompound command. As a conseguence,
aliases defined in a function are not available until after that function is executed. To be safe, always put
alias definitions on a separate line, and do not use aliasin compound commands.

Aliases are not inherited by child processes. Bourne shell (sh) does not recognize aliases.

More about functionsisin Chapter 11, Functions.

Functions arefaster

Aliases are looked up after functions and thus resolving is slower. While aliases are easier to
understand, shell functions are preferred over aliases for amost every purpose.

52

The Bash environment

More Bash options
Displaying options

We already discussed a couple of Bash options that are useful for debugging your scripts. In this section,
we will take a more in-depth view of the Bash options.

Use the - 0 option to set to display all shell options:

willy:~> set -0
al l export off
braceexpand on
enacs on
errexit of f
hashal | on

hi stexpand on
hi story on

i gnoreeof off

i nteractive-coments on
keywor d of f
noni t or on
nocl obber off
noexec of f

nogl ob of f
nol og of f
notify of f

nounset of f
onecnd of f
physi cal off
posi x of f
privileged off
ver bose of f
Vi of f

xtrace of f

See the Bash Info pages, section Shell Built-in Commands - The Set Built-in for a description of each
option. A lot of options have one-character shorthands: the xt r ace option, for instance, is equal to spec-
ifying set - x.

Changing options

Shell options can either be set different from the default upon calling the shell, or be set during shell
operation. They may also be included in the shell resource configuration files.

The following command executes a script in POSI X-compatible mode:

willy:~/scripts> bash --posix script.sh

For changing the current environment temporarily, or for use in a script, we would rather use set. Use -
(dash) for enabling an option, + for disabling:

53

The Bash environment

willy:~/test> set -o nocl obber
willy:~/test> touch test

willy:~/test> date > test
bash: test: cannot overwite existing file

willy:~/test> set +o nocl obber
willy:~/test> date > test
The above example demonstratesthe nocl obber option, which prevents existing files from being over-

written by redirection operations. The same goes for one-character options, for instance - u, which will
treat unset variables as an error when set, and exits a non-interactive shell upon encountering such errors:

willy:~> echo $VAR

willy:~> set -u

willy:~> echo $VAR
bash: VAR unbound vari abl e

Thisoption is aso useful for detecting incorrect content assignment to variables: the same error will also
occur, for instance, when assigning a character string to a variable that was declared explicitly as one
holding only integer values.

One last example follows, demonstrating the nogl ob option, which prevents specia characters from
being expanded:

willy:~/testdir> set -0 noglob

willy:~/testdir> touch *

willy:~/testdir>1s -I *
STW- WA - - 1 wlly willy 0 Feb 27 13:37 *
Summary

The Bash environment can be configured globally and on a per user basis. Various configuration files are
used to fine-tune the behavior of the shell.

These files contain shell options, settings for variables, function definitions and various other building
blocks for creating ourselves a cosy environment.

Except for the reserved Bourne shell, Bash and special parameters, variable names can be chosen more
or lessfreely.

Because alot of characters have double or even triple meanings, depending on the environment, Bash uses
asystem of quoting to take away special meaning from one or multiple characters when special treatment
is not wanted.

The Bash environment

Bash uses various methods of expanding command line entries in order to determine which commands
to execute.

Exercises

For this exercise, you will need to read the useradd man pages, because we are going to use the/ et c/
skel directory to hold default shell configuration files, which are copied to the home directory of each
newly added user.

First we will do some general exercises on setting and displaying variables.

1

Create 3 variables, VARL, VAR2 and VAR3; initialize them to hold the values “thirteen”, “13” and
“Happy Birthday” respectively.

. Display the values of al three variables.

. Aretheselocal or global variables?

. Remove VARS.

. Can you see the two remaining variables in a new terminal window?

. Edit/ et c/ profil e sothat al users are greeted upon login (test this).

. For the root account, set the prompt to something like “Danger!! root is doing stuff in\w”, preferably

in abright color such asred or pink or in reverse video mode.

. Make sure that newly created users also get a nice personalized prompt which informs them on which

system in which directory they are working. Test your changes by adding a new user and logging in
asthat user.

. Write a script in which you assign two integer values to two variables. The script should calculate

the surface of arectangle which has these proportions. It should be aired with comments and generate
elegant output.

Don't forget to chmod your scripts!

55

Chapter 4. Regular expressions

In this chapter we discuss:

» Using regular expressions

» Regular expression metacharacters
 Finding patternsin files or output

» Character ranges and classesin Bash

Regular expressions

What are regular expressions?

A regular expression is a pattern that describes a set of strings. Regular expressions are constructed anal-
ogously to arithmetic expressions by using various operators to combine smaller expressions.

Thefundamental building blocksaretheregular expressionsthat match asingle character. Most characters,
including all letters and digits, are regular expressions that match themselves. Any metacharacter with
special meaning may be quoted by preceding it with a backslash.

Regular expression metacharacters

A regular expression may be followed by one of several repetition operators (metacharacters):

Table4.1. Regular expression operators

Operator Effect
Matches any single character.

? The preceding item is optional and will be
matched, at most, once.

* The preceding item will be matched zero or more
times.

+ The preceding item will be matched one or more
times.

{N} The preceding item is matched exactly N times.

{N} The preceding item is matched N or more times.

{N,M} The preceding item is matched at least N times,
but not more than M times.

- represents the range if it's not first or last in alist
or the ending point of arangein alist.

n Matches the empty string at the beginning of a
line; also represents the characters not in the range
of alist.

$ Matches the empty string at the end of aline.

56

Regular expressions

Operator Effect

\b Matches the empty string at the edge of aword.

\B Matches the empty string provided it's not at the
edge of aword.

\< Match the empty string at the beginning of word.

\> Match the empty string at the end of word.

Two regular expressions may be concatenated; the resulting regular expression matches any string formed
by concatenating two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator “|”; the resulting regular expression matches
any string matching either subexpression.

Repetition takes precedence over concatenation, which in turn takes precedence over aternation. A whole
subexpression may be enclosed in parentheses to override these precedence rules.

Basic versus extended regular expressions

In basic regular expressions the metacharacters “?”, “+", “{”, “I", “(", and “)” lose their special meaning;
instead use the backslashed versions “\?”, “\+”, “\{", “\|", “\(", and “\)".

Check in your system documentation whether commands using regular expressions support extended ex-
pressions.

Examples using grep
What is grep?

grep searchesthe input filesfor lines containing amatch to agiven pattern list. When it findsamatchin a
line, it copies the line to standard output (by default), or whatever other sort of output you have requested
with options.

Though grep expects to do the matching on text, it has no limits on input line length other than available
memory, and it can match arbitrary characterswithin aline. If thefinal byte of aninput fileisnot anewline,
grep silently supplies one. Since newline is also a separator for the list of patterns, there is no way to
match newline charactersin atext.

Some examples:

cathy ~> grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11: 0: operator:/root:/sbin/nologin

cathy ~> grep -n root /etc/passwd
l:root:x:0:0:root:/root:/bin/bash
12: operator: x:11: 0: operator:/root:/sbin/nologin

cathy ~> grep -v bash /etc/passwd | grep -v nol ogin
sync: x: 5: 0:sync:/sbhin:/bin/sync
shut down: x: 6: 0: shut down: / sbi n: / sbi n/ shut down

57

Regular expressions

hal t:x:7:0: hal t:/sbin:/sbin/halt

news: x: 9: 13: news: / var/ spool / news:

mai | nul | : x:47:47::/var/ spool / mqueue: / dev/ nul
xfs:x:43:43: X Font Server:/etc/X11l/fs:/bin/fal se
rpc: x: 32: 32: Port mapper RPC user:/:/bin/fal se
nscd: x: 28: 28: NSCD Daenon:/:/bin/fal se

named: x: 25: 25: Naned: / var/ naned: / bi n/ f al se

squi d: x: 23: 23: : /var/ spool / squi d: / dev/ nul

| dap: x: 55: 55: LDAP User:/var/li b/l dap:/bin/false
apache: x: 48: 48: Apache: /var/wwv / bi n/ f al se

cathy ~> grep -c fal se /etc/passwd
7

cathy ~> grep -i ps ~/.bash* | grep -v history

/ hone/ cat hy/ . bashrc: PS1="\[\033[1; 44mM] $USER is in \wWA[\033[0m]

With the first command, user cathy displays the linesfrom/ et ¢/ passwd containing the string root.
Then she displays the line numbers containing this search string.

With the third command she checks which users are not using bash, but accounts with the nologin shell
are not displayed.

Then she counts the number of accounts that have/ bi n/ f al se asthe shell.

The last command displays the lines from all the files in her home directory starting with ~/ . bash,
excluding matches containing the string history, so as to exclude matches from ~/ . bash_hi st ory
which might contain the same string, in upper or lower cases. Note that the search is for the string “ps’,
and not for the command ps.

Now let's see what else we can do with grep, using regular expressions.

Grep and regular expressions

If you are not on Linux
We use GNU grep in these exampl es, which supports extended regular expressions. GNU grep is

the default on Linux systems. If you areworking on proprietary systems, check withthe- V option
which version you are using. GNU grep can be downloaded from http://gnu.org/directory/.

Line and word anchors

From the previous example, we now exclusively want to display lines starting with the string “root”:

cathy ~> grep ~root /etc/passwd
root: x:0:0:root:/root:/bin/bash

If we want to see which accounts have no shell assigned whatsoever, we search for linesending in “:":

cathy ~> grep :$ /etc/passwd
news: x: 9: 13: news: / var/ spool / news:

58

http://gnu.org/directory/

Regular expressions

Tocheck that PATHisexportedin~/ . bashr ¢, first select “ export” linesand then search for lines starting
with the string “PATH”, so as not to display MANPATH and other possible paths:

cathy ~> grep export ~/.bashrc | grep '\<PATH
export PATH="/bin:/usr/lib/mh:/1ib:/usr/bin:/usr/local/bin:/usr/ucb:/usr/dbin:$P

Similarly, \> matches the end of aword.

If you want to find a string that is a separate word (enclosed by spaces), it is better use the - w, asin this
example where we are displaying information for the root partition:

cathy ~> grep -w/ /etc/fstab
LABEL=/ / ext 3 defaul ts 11

If this option is not used, all the lines from the file system table will be displayed.

Character classes

A bracket expression isalist of charactersenclosed by “[” and “]”. It matches any single character in that
list; if the first character of the list is the caret, “~”, then it matches any character NOT in the list. For
example, the regular expression “[0123456789]” matches any single digit.

Within abracket expression, arange expression consists of two characters separated by ahyphen. It match-
esany single character that sorts between thetwo characters, inclusive, using thelocal €'s collating sequence
and character set. For example, inthe default C locale, “[a-d]” isequivalent to “[abcd]”. Many locales sort
charactersin dictionary order, and in these locales “[a-d]” istypically not equivalent to “[abcd]”; it might
be equivalent to“[aBbCcDd]”, for example. To obtain thetraditional interpretation of bracket expressions,
you can use the C locale by setting the LC_ALL environment variable to the value“C”.

Finally, certain named classes of characters are predefined within bracket expressions. See the grep man

or info pages for more information about these predefined expressions.

cathy ~> grep [yf] /etc/group
sys: X: 3:root, bi n, adm

tty: x:5:

mai |l : x:12: mai |, postfix
ftp:x:50:

nobody: x: 99:

fl oppy: x: 19:

xfs:x:43:

nf snobody: x: 65534:
postfi x: x: 89:

In the example, all the lines containing either a*y” or “f” character are displayed.

Wildcards

Usethe“.” for a single character match. If you want to get alist of all five-character English dictionary
words starting with “¢” and ending in “h” (handy for solving crosswords):

cathy ~> grep '\<c...h\>" /usr/share/dict/words

59

Regular expressions

catch
cl ash
cloth
coach
couch
cough
crash
crush

If you want to display lines containing the literal dot character, use the - F option to grep.
For matching multiple characters, use the asterisk. This example selects all words starting with “c” and

ending in “h” from the system's dictionary:

cathy ~> grep '\<c.*h\>" /usr/share/dict/words
cal i ph

cash

catch

cheesecl oth

cheet ah

--output onmitted--

If you want to find the literal asterisk character in afile or output, use single quotes. Cathy in the example
below first tries finding the asterisk character in/ et ¢/ pr of i | e without using quotes, which does not
return any lines. Using quotes, output is generated:

cathy ~> grep * /etc/profile

cathy ~> grep '*' /etc/profile
for i in /etc/profile.d/*.sh ; do

Pattern matching using Bash features

Character ranges

Apart from grep and regular expressions, there's agood deal of pattern matching that you can do directly
in the shell, without having to use an external program.

Asyou aready know, the asterisk (*) and the question mark (?) match any string or any single character,
respectively. Quote these special charactersto match them literaly:

cat hy ~> touch "*"

cathy ~> |s "*"
*

But you can also use the square braces to match any enclosed character or range of characters, if pairs of
characters are separated by a hyphen. An example:

cathy ~>1|s -1d [a-cx-2]*

60

Regular expressions

dr wxr - Xr - x 2 cathy cathy 4096 Jul 20 2002 app-defaults/

dr Wxr wxr - x 4 cat hy cat hy 4096 May 25 2002 arabic/

dr Wxr wxr - x 2 cathy cat hy 4096 Mar 4 18:30 bin/

dr wxr - Xr - x 7 cathy cat hy 4096 Sep 2 2001 crossover/
dr Wxr wxr - x 3 cathy cat hy 4096 Mar 22 2002 xm/

Thislists al filesin cathy's home directory, starting with“a’, “b”, “c”, “x”, “y” or “z".

If the first character within the bracesis“!” or “~", any character not enclosed will be matched. To match
thedash (“-"), includeit asthefirst or last character in the set. The sorting depends on the current locale and
of the value of the LC_COLLATE variable, if it is set. Mind that other locales might interpret “[a-cx-z]”
as“[aBbCcXxYyZz]" if sorting is done in dictionary order. If you want to be sure to have the traditional
interpretation of ranges, force this behavior by setting LC_COLLATE or LC_ALL to“C”.

Character classes

Character classes can be specified within the square braces, using the syntax [:CLASS:], where CLASS
is defined in the POSIX standard and has one of the values

“ alnum” , “ alphdi , " ag:ii” , “ bl ar]kﬂ , " Cntrl ” , “ di gi t" , “ graph” , “ IOWG. , printli , b punct” , “ $me” , “ uppa’” ,
“word” or “xdigit”.

Some examples:

cathy ~> Is -1d [[:digit:]]*
dr wxr wxr - X 2 cathy cathy 4096 Apr 20 13:45 2/

cathy ~> Is -1d [[:upper:]]*

dr wxr wxr - - 3 cathy cat hy 4096 Sep 30 2001 Nautil us/
dr wxr wxr - X 4 cathy cat hy 4096 Jul 11 2002 QpenOfice.orgl. 0/
STW- MW - - 1 cathy cat hy 997376 Apr 18 15:39 Schedul e. sdc

When the ext gl ob shell option is enabled (using the shopt built-in), several extended pattern matching
operators are recognized. Read more in the Bash info pages, section Basic shell features — Shell Expan-
sions — Filename Expansion — Pattern Matching.

Summary

Regular expressions are powerful tools for selecting particular lines from files or output. A lot of UNIX
commands use regular expressions. vim, perl, the PostgreSQL database and so on. They can be made
available in any language or application using external libraries, and they even found their way to non-
UNIX systems. For instance, regular expressions are used in the Excell spreadsheet that comes with the
MicroSoft Windows Office suite. In this chapter we got the feel of the grep command, which isindispens-
ablein any UNIX environment.

Note

The grep command can do much more than the few tasks we discussed here; we only used it as
an examplefor regular expressions. The GNU grep version comes with plenty of documentation,
which you are strongly advised to read!

Bash has built-in features for matching patterns and can recognize character classes and ranges.

61

Regular expressions

Exercises

These exercises will help you master regular expressions.

1.

2.

8.

9.

Display alist of all the users on your system who log in with the Bash shell as a defaullt.

Fromthe/ et ¢/ gr oup directory, display al lines starting with the string “ daemon”.

. Print al the lines from the same file that don't contain the string.

. Display locahost information from the / et ¢/ host s file, display the line number(s) matching the

search string and count the number of occurrences of the string.

. Display alist of / usr/ shar e/ doc subdirectories containing information about shells.

. How many README files do these subdirectories contain? Don't count anything in the form of

“README.a_string”.

. Make alist of filesin your home directory that were changed less that 10 hours ago, using grep, but

leave out directories.
Put these commands in a shell script that will generate comprehensible output.

Canyou find an alternative for wc - | , using grep?

10.Using thefile system table (/ et ¢/ f st ab for instance), list local disk devices.

11.Make a script that checks whether a user existsin/ et ¢/ passwd. For now, you can specify the user

name in the script, you don't have to work with arguments and conditionals at this stage.

12.Display configuration filesin / et ¢ that contain numbersin their names.

62

Chapter 5. The GNU sed stream editor

At the end of this chapter you will know about the following topics:
e What issed?

* Interactive use of sed

» Regular expressions and stream editing

» Using sed commands in scripts

Thisisan introduction

These explanations are far from complete and certainly not meant to be used as the definite user manual for
sed. This chapter is only included in order to show some more interesting topics in the next chapters, and
because every power user should have a basic knowledge of things that can be done with this editor.

For detailed information, refer to the sed info and man pages.

Introduction
What is sed?

A Stream EDitor is used to perform basic transformations on text read from afile or apipe. Theresult is
sent to standard output. The syntax for the sed command has no output file specification, but results can
be saved to afile using output redirection. The editor does not modify the original input.

What distinguishes sed from other editors, such asvi and ed, isits ability to filter text that it gets from a
pipeline feed. Y ou do not need to interact with the editor whileit is running; that iswhy sed is sometimes
called a batch editor. This feature allows use of editing commands in scripts, greatly easing repetitive
editing tasks. When facing replacement of text in alarge number of files, sed isagreat help.

sed commands

The sed program can perform text pattern substitutions and deletions using regular expressions, like the
ones used with the grep command; see the section called “Examples using grep”.

The editing commands are similar to the ones used in the vi editor:

Tableb5.1. Sed editing commands

Command Result

a Append text below current line.

c\ Change text in the current line with new text.
d Delete text.

i\ Insert text above current line.

p Print text.

r Read afile.

s Search and replace text.

63

The GNU sed stream editor

Command Result

w Writeto afile.

Apart from editing commands, you can give optionsto sed. An overview isin the table below:

Table5.2. Sed options

Option Effect

-e SCRI PT Add the commands in SCRIPT to the set of com-
mands to be run while processing the input.

-f Add the commands contained in the file SCRIPT-

FILE to the set of commands to be run while pro-
cessing the input.

-n Silent mode.

-V Print version information and exit.

The sed info pages contain more information; we only list the most frequently used commands and options
here.

Interactive editing

Printing lines containing a pattern

Thisis something you can do with grep, of course, but you can't do a“find and replace” using that com-
mand. Thisisjust to get you started.

Thisisour example text file:

sandy ~> cat -n exanple

1 This is the first line of an exanple text.
2 It is atext with erors.
3 Lots of erors.
4 So nmuch erors, all these erors are making ne sick
5 This is a line not containing any errors.
6 This is the last |ine.
sandy ~>

We want sed to find all the lines containing our search pattern, in this case “erors’. We use the p to obtain
the result:

sandy ~> sed '/erors/p' example

This is the first line of an exanple text.

It is atext with erors.

It is atext with erors.

Lots of erors.

Lots of erors.

So nmuch erors, all these erors are making nme sick.
So nmuch erors, all these erors are making me sick.
This is a line not containing any errors.

64

The GNU sed stream editor

This is the last |ine.

sandy ~>

Asyou notice, sed prints the entire file, but the lines containing the search string are printed twice. This
is not what we want. In order to only print those lines matching our pattern, use the - n option:

sandy ~> sed -n '/erors/p' exanple

It is atext with erors.

Lots of erors.

So much erors, all these erors are naking me sick.

sandy ~>

Deleting lines of input containing a pattern

We use the same exampl e text file. Now we only want to see the lines not containing the search string:

sandy ~> sed '/erors/d" exanple

This is the first line of an exanple text.
This is a line not containing any errors.
This is the last line.

sandy ~>
The d command results in excluding lines from being displayed.

Matching lines starting with a given pattern and ending in a second pattern are showed like this:

sandy ~> sed -n '/~This.*errors. $/p' exanple
This is a line not containing any errors.

sandy ~>

Note that the last dot needs to be escaped in order to actually match. In our example the expression just
matches any character, including the last dot.

Ranges of lines

Thistime we want to take out the lines containing the errors. In the example these are lines 2 to 4. Specify
this range to address, together with the d command:

sandy ~> sed '2,4d" exanple

This is the first line of an exanple text.
This is a line not containing any errors.
This is the last line.

sandy ~>

To print the file starting from a certain line until the end of the file, use acommand similar to this:

65

The GNU sed stream editor

sandy ~> sed '3, $d" exanple
This is the first line of an exanple text.
It is atext with erors.

sandy ~>
This only printsthe first two lines of the examplefile.

The following command prints the first line containing the pattern “atext”, up to and including the next
line containing the pattern “aline”:

sandy ~> sed -n '/a text/,/This/p' exanmple

It is atext with erors.

Lots of erors.

So much erors, all these erors are making me sick.
This is a line not containing any errors.

sandy ~>

Find and replace with sed

In the example file, we will now search and replace the errors instead of only (de)selecting the lines
containing the search string.

sandy ~> sed 's/erors/errors/' exanple

This is the first line of an exanple text.

It is atext with errors.

Lots of errors.

So nmuch errors, all these erors are making ne sick.
This is a line not containing any errors.

This is the last line.

sandy ~>

As you can see, this is not exactly the desired effect: in line 4, only the first occurrence of the search
string has been replaced, and thereis still an 'eror’ left. Use the g command to indicate to sed that it should
examine the entire line instead of stopping at the first occurrence of your string:

sandy ~> sed 's/erors/errors/g" exanple

This is the first Iine of an exanple text.

It is atext with errors.

Lots of errors.

So nuch errors, all these errors are making me sick.
This is a line not containing any errors.

This is the last line.

sandy ~>

Toinsert astring at the beginning of each line of afile, for instance for quoting:

sandy ~> sed 's/*/> /' exanple

66

The GNU sed stream editor

> This is the first line of an exanple text.

> 1t is atext with erors.

> Lots of erors.

> So much erors, all these erors are making nme sick
> This is a line not containing any errors.

> This is the last |ine.

sandy ~>

Insert some string at the end of each line:

sandy ~> sed 's/$/EOL/' exanple

This is the first line of an exanple text.EQOL

It is atext with erors. EOL

Lots of erors.ECL

So much erors, all these erors are making ne sick. EOL
This is a line not containing any errors. EOL

This is the last line. EQOL

sandy ~>

Multiple find and replace commands are separated with individual - e options:

sandy ~> sed -e 's/erors/errors/g" -e 's/last/final/g exanple
This is the first line of an exanple text.

It is atext with errors.

Lots of errors.

So nmuch errors, all these errors are making me sick.

This is a line not containing any errors.

This is the final Iine.

sandy ~>

Keepin mind that by default sed printsitsresultsto the standard output, most likely your terminal window.
If you want to save the output to afile, redirect it:

sed option 'sone/expression' file to process > sed output _in_a file
Mor e examples
Plenty of sed examples can be found in the startup scripts for your machine, which are usually in
/etc/init.dor/etc/rc.d/init.d.Changeintothedirectory containing the initscripts

on your system and issue the following command:

grep sed *
Non-interactive editing

Reading sed commands from a file

Multiple sed commands can be put in afile and executed using the - f option. When creating such afile,
make sure that:

67

The GNU sed stream editor

 No trailing white spaces exist at the end of lines.
» No quotes are used.

» When entering text to add or replace, all except the last line end in a backslash.

Writing output files

Writing output is done using the output redirection operator >. Thisis an example script used to create
very simple HTML files from plain text files.

sandy ~> cat script.sed

Li\

<ht m >\

<head><titl e>sed generated html </titl e></head>\
<body bgcol or="#ffffff">\

<pr e>

$a\

</ pre>\

</ body>\

</htm >

sandy ~> cat txt2htm .sh
#!/ bi n/ bash

This is a sinple script that you can use for converting text into HTM.
First we take out all newline characters, so that the appendi ng only happens
once, then we replace the new i nes.

echo "converting $1..."

SCRI PT="/ hore/ sandy/ scri pt s/ scri pt. sed"

NAVE="$1"

TEMPFI LE="/var/t np/ sed. $PI D. t np"

sed "s/\n/"M" $1 | sed -f $SCRIPT | sed "s/*M\n/" > $TEMPFI LE
nv $TEMPFI LE $NAMVE

echo "done."

sandy ~>

$1 holds the first argument to a given command, in this case the name of the file to convert:
sandy ~> cat test

linel

i ne2
i ne3

More on positional parametersin Chapter 7, Conditional statements.

sandy ~> txt2htm .sh test
converting test...

68

The GNU sed stream editor

done.

sandy ~> cat test

<htm >

<head><titl e>sed generated htm </titl e></head>
<body bgcol or="#ffffff">
<pre>

linel

line2

line3

</ pre>

</ body>

</htm >

sandy ~>

Thisis not really how it is done; this example just demonstrates sed capabilities. See the section called
“Gawk variables’ for amore decent solution to this problem, using awk BEGIN and END constructs.

Easy sed

Advanced editors, supporting syntax highlighting, can recognize sed syntax. This can be a great
help if you tend to forget backslashes and such.

Summary

The sed stream editor is a powerful command line tool, which can handle streams of data: it can take
input lines from a pipe. This makes it fit for non-interactive use. The sed editor uses vi-like commands
and accepts regular expressions.

The sed tool can read commands from the command line or from a script. It is often used to perform find-
and-replace actions on lines containing a pattern.

Exercises

These exercises are meant to further demonstrate what sed can do.

1.

Print alist of filesinyour scri pt s directory, ending in “.sh”. Mind that you might have to unalias
Is. Put the result in atemporary file.

. Make alist of filesin/ usr/ bi n that have the letter “a’ as the second character. Put the result in a
temporary file.
. Deletethe first 3 lines of each temporary file.

. Print to standard output only the lines containing the pattern “an”.

. Create afile holding sed commands to perform the previous two tasks. Add an extra command to this

file that adds a string like “*** This might have something to do with man and man pages ***” in the
line preceding every occurence of the string “man”. Check the results.

. A'long listing of theroot directory, / , isused for input. Create afile holding sed commands that check

for symboalic links and plain files. If afileis a symboalic link, precede it with aline like “--Thisis a

69

The GNU sed stream editor

symlink--". If the file is a plain file, add a string on the same line, adding a comment like “<--- this
isaplainfile’.

7. Create ascript that showslines containing trailing white spaces from afile. This script should use ased
script and show sensible information to the user.

70

Chapter 6. The GNU awk programming
language

In this chapter we will discuss:

What is gawk?

Using gawk commands on the command line
How to format text with gawk

How gawk uses regular expressions

Gawk in scripts

Gawk and variables

Tomakeit morefun

As with sed, entire books have been written about various versions of awk. This introduction is far from
complete and is only intended for understanding examples in the following chapters. For more information,
best start with the documentation that comes with GNU awk: “GAWK: Effective AWK Programming: A
User's Guide for GNU Awk”.

Getting started with gawk
What is gawk?

Gawk isthe GNU version of the commonly available UNIX awk program, another popular stream editor.
Since the awk program is often just alink to gawk, we will refer to it as awk.

The basic function of awk isto search files for lines or other text units containing one or more patterns.
When aline matches one of the patterns, special actions are performed on that line.

Programs in awk are different from programs in most other languages, because awk programs are “da-
ta-driven”: you describe the data you want to work with and then what to do when you find it. Most other
languages are “procedural.” Y ou have to describe, in great detail, every step the program isto take. When
working with procedural languages, it is usually much harder to clearly describe the data your program
will process. For this reason, awk programs are often refreshingly easy to read and write.

What doesit really mean?

Back in the 1970s, three programmers got together to create this language. Their names were
Aho, Kernighan and Weinberger. They took the first character of each of their names and put
them together. So the name of the language might just as well have been “wak”.

Gawk commands

When you run awk, you specify an awk programthat tellsawk what to do. The program consists of aseries
of rules. (It may also contain function definitions, loops, conditions and other programming constructs,
advanced featuresthat we will ignore for now.) Each rule specifies one pattern to search for and one action
to perform upon finding the pattern.

There are several waysto run awk. If the program is short, it is easiest to run it on the command line:

71

The GNU awk programming language

awk PROGRAM i nputfile(s)

If multiple changes have to be made, possibly regularly and on multiple files, it is easier to put the awk
commandsin ascript. Thisisread like this:

awk -f PROGRAM FI LE inputfile(s)
The print program

Printing selected fields

The print command in awk outputs selected data from the input file.

When awk reads a line of afile, it divides the line in fields based on the specified input field separator,
FS, whichisan awk variable (see the section called “ The output separators’). This variable is predefined
to be one or more spaces or tabs.

Thevariables $1, $2, $3, ..., $N hold the values of the first, second, third until the last field of an input
line. The variable $0 (zero) holds the value of the entire line. Thisis depicted in the image below, where
we see six columsin the output of the df command:

Figure6.1. Fieldsin awk

72

The GNU awk programming language

In the output of Is- | , there are 9 columns. The print statement uses these fields as follows:

kel ly@ctarine ~/test>1Is -1 | awk '{ print $5 $9 }'
160orig

121script. sed

120tenp_file

126t est

120t wol i nes

441t xt 2ht m . sh

kel l y@ctarine ~/test>

This command printed the fifth column of along file listing, which contains the file size, and the last
column, the name of the file. This output is not very readable unless you use the official way of referring
to columns, which is to separate the ones that you want to print with a comma. In that case, the default
output separater character, usually a space, will be put in between each output field.

L ocal configuration

Notethat the configuration of the output of thels- 1 command might be different on your system.
Display of time and date is dependent on your local e setting.

Formatting fields

Without formatting, using only the output separator, the output looks rather poor. Inserting a couple of
tabs and a string to indicate what output thisiswill makeit look alot better:

kelly@ctarine ~/test>1ls -Idh * | grep -v total | \
awk '"{ print "Size is " $5 " bytes for " $9 }'

Size is 160 bytes for orig

Size is 121 bytes for script.sed

Size is 120 bytes for tenmp file

Size is 126 bytes for test

Size is 120 bytes for twolines

Size is 441 bytes for txt2htm .sh

kel l y@ctarine ~/test>

Note the use of the backslash, which makes long input continue on the next line without the shell inter-
preting this as a separate command. While your command line input can be of virtually unlimited length,
your monitor is not, and printed paper certainly isn't. Using the backslash also allows for copying and
pasting of the above linesinto aterminal window.

The - h option to Isis used for supplying humanly readable size formats for bigger files. The output of a
long listing displaying thetotal amount of blocksin the directory isgiven when adirectory isthe argument.
Thisline is useless to us, so we add an asterisk. We also add the - d option for the same reason, in case
asterisk expandsto adirectory.

The backslash in this example marks the continuation of aline. Seethe section called “ Escape characters’.

Y ou can take out any number of columns and even reverse the order. In the example below thisis demon-
strated for showing the most critical partitions:

73

The GNU awk programming language

kel ly@ctarine ~> df -h | sort -rnk 5| head -3 | \

awk '{ print "Partition " $6 "\t: " $5 " full!" }'
Partition /var : 86% full!
Partition /usr : 85%full!

Partition /hone : 70% ful |!
kel | y@ctari ne ~>

The table below gives an overview of special formatting characters:

Table 6.1. Formatting charactersfor gawk

Sequence M eaning

\a Bell character

\n Newline character
\t Tab

Quotes, dollar signs and other meta-characters should be escaped with a backslash.

The print command and regular expressions

A regular expression can be used as a pattern by enclosing it in slashes. The regular expression is then
tested against the entire text of each record. The syntax is as follows:

awk ' EXPRESSI ON { PROGRAM }' file(s)

Thefollowing example displaysonly local disk deviceinformation, networked file systems are not shown:

kelly is in ~>df -h | awk '/devi/hd/ { print $6 "\t: " $5 }'

/ . 46%
/ boot 10%
/ opt : 84%
/usr D 97%
[var . 73%

/.voll : 8%

kelly is in ~>

Slashes need to be escaped, because they have a special meaning to the awk program.

Below another example where we search the/ et ¢ directory for filesending in “.conf” and starting with

either “a’ or “x”, using extended regular expressions:

kelly is in/etc>1s -1 | awk '/\<(a]x).*\.conf$/ { print $9 }'
and. conf

antivir.conf

xcdr oast . conf

xi net d. conf

kelly is in /etc>

74

The GNU awk programming language

This example illustrates the special meaning of the dot in regular expressions: the first one indicates that
we want to search for any character after the first search string, the second is escaped because it is part
of astring to find (the end of the file name).

Special patterns

In order to precede output with comments, use the BEGIN statement:

kelly is in/etc>1ls -1 | \

awk 'BEGAN{ print "Files found:\n" } /\<[a|x].*\.conf$/ { print $9 }'
Fil es found:

and. conf

antivir. conf

xcdr oast . conf

Xi net d. conf

kelly is in /etc>

The END statement can be added for inserting text after the entire input is processed:

kelly is in/etc>1s -1 | \

awk '/\<[a]x].*\.conf$/ { print $9 } END { print \
"Can | do anything else for you, nistress?" }'
amd. conf

antivir. conf

xcdr oast . conf

xi net d. conf

Can | do anything else for you, mstress?

kelly is in /etc>

Gawk scripts

As commands tend to get alittle longer, you might want to put them in a script, so they are reusable. An
awk script contains awk statements defining patterns and actions.

As an illustration, we will build a report that displays our most loaded partitions. See the section called
“Formatting fields”.

kelly is in ~> cat diskrep.awk

BEG N { print "*** WARNI NG WARNI NG WARNI NG ***" }
I\N<[8]9][0-91% { print "Partition " $6 "\t: " $5 " full!" }
END { print "*** Gve noney for new di sks URGENTLY! ***" }

kelly is in ~>df -h | awk -f diskrep.awk
*** WARNI NG WARNI NG WARNI NG ***

Partition /fusr : 97%full!

*** G ve noney for new di sks URGENTLY! ***

kelly is in ~>

75

The GNU awk programming language

awk first prints a begin message, then formats all the lines that contain an eight or anine at the beginning
of aword, followed by one other number and a percentage sign. An end message is added.

Syntax highlighting

Awk is a programming language. Its syntax is recognized by most editors that can do syntax
highlighting for other languages, such as C, Bash, HTML, etc.

Gawk variables

Asawk isprocessing the input file, it uses several variables. Some are editable, some are read-only.

The input field separator

Thefield separator, which is either asingle character or aregular expression, controls the way awk splits
up an input record into fields. Theinput record is scanned for character sequences that match the separator
definition; the fields themselves are the text between the matches.

The field separator is represented by the built-in variable FS. Note that this is something different from
the | FS variable used by POSIX-compliant shells.

The value of thefield separator variable can be changed in the awk program with the assignment operator
=. Often the right time to do thisis at the beginning of execution before any input has been processed, so
that the very first record is read with the proper separator. To do this, use the special BEGIN pattern.

In the example below, we build a command that displays all the users on your system with a description:

kelly isin ~>awk "BEGAN{ FS=":" } { print $1 "\t" $5 }' /etc/passwd
--output onmitted--

kelly Kelly Smith

franky Franky B.

eddy Eddy Wiite

willy WIIiam Bl ack

cat hy Catherine the G eat

sandy Sandy Li Wong

kelly is in ~>

Inan awk script, it would look like this:

kelly is in ~> cat printnanes. ank
BEG N { FS=":" }
{ print $1 "\t" $5 }

kelly is in ~> awk -f printnanmes. awk /etc/passwd
--output omtted--

Choose input field separators carefully to prevent problems. An example to illustrate this: say you get
input in the form of lines that look like this:

“Sandy L. Wong, 64 Zoo St., Antwerp, 2000X”

Y ou write acommand line or a script, which prints out the name of the person in that record:

76

The GNU awk programming language

ank 'BEGAN{ FS="," } { print $1, $2, $3 }' inputfile
But a person might have a PhD, and it might be written like this:
“Sandy L. Wong, PhD, 64 Zoo St., Antwerp, 2000X”

Your awk will give the wrong output for this line. If needed, use an extra awk or sed to uniform data
input formats.

The default input field separator is one or more whitespaces or tabs.

The output separators

The output field separator

Fields are normally separated by spaces in the output. This becomes apparent when you use the correct
syntax for the print command, where arguments are separated by commas:

kel ly@ctarine ~/test> cat test
recordl dat al
record2 dat a2

kel ly@ctarine ~/test> awk '{ print $1 $2}' test
recordldat al
recor d2dat a2

kel ly@ctarine ~/test> awk '{ print $1, $2}' test
recordl datal
record2 data2

kel l y@ctarine ~/test>

If you don't put in the commas, print will treat the items to output as one argument, thus omitting the use
of the default output separator, OFS.

Any character string may be used as the output field separator by setting this built-in variable.

The output record separator

The output from an entire print statement is called an output record. Each print command resultsin one
output record, and then outputs a string called the output record separator, ORS. The default value for this
variableis“\n”, anewline character. Thus, each print statement generates a separate line.

To change the way output fields and records are separated, assign new values to OFS and ORS:

kel ly@ctarine ~/test> awk "BEGA N { OFS=";" ; ORS="\n-->\n" } \
{ print $1, $2}' test

recordl; datal

-->

record2; dat a2

-->

kel l y@ctarine ~/test>

77

The GNU awk programming language

If the value of ORS does not contain a newline, the program's output is run together on asingle line.

The number of records

The built-in NR holds the number of recordsthat are processed. It isincremented after reading a new input
line. You can useit at the end to count the total number of records, or in each output record:

kel ly@ctarine ~/test> cat processed. ank

BEG N { OFS="-" ; ORS="\n--> done\n" }

{ print "Record nunber " NR ":\t" $1,%$2 }

END { print "Nunber of records processed: " NR}

kel ly@ctarine ~/test> awk -f processed. anwk test

Record nunber 1: recordl-datal
--> done

Record nunber 2: record2-dat a2
--> done

Nunber of records processed: 2

--> done

kel l y@ctarine ~/test>

User defined variables

Apart from the built-in variables, you can define your own. When awk encountersareferenceto avariable
which does not exist (which is not predefined), the variable is created and initialized to a null string. For
all subsequent references, the value of the variable is whatever value was assigned last. Variables can be
astring or anumeric value. Content of input fields can also be assigned to variables.

Values can be assigned directly using the = operator, or you can use the current value of the variablein

combination with other operators:

kel l y@ctarine ~> cat revenues

20021009 20021013 consul t ancy
20021015 20021020 trai ning
20021112 20021123 appdev
20021204 20021215 trai ning

kel l y@ctarine ~> cat total.awk
{ total =total + $5 }
{ print "Send bill for " $5 " dollar to " $4 }

END { print "-----------mmmmm o \'nTot al

kel ly@ctarine ~> anwk -f total.awk test
Send bill for 2500 dollar to Bi gConp
Send bill for 2000 dollar to EduConp
Send bill for 10000 dollar to Smart Conp
Send bill for 5000 dollar to EduConp

Total revenue: 19500

kel | y@ctari ne ~>

Smar t Conp

2500
2000
10000
5000

t ot al

78

}

The GNU awk programming language

C-like shorthands like VAR+= value are al so accepted.

More examples

The example from the section called “Writing output files” becomes much easier when we use an awk
script:

kel ly@ctarine ~/html > cat nake-htm -fromtext.awk

BEA N { print "<htm >\ n<head><titl e>Awk-generated HTM.</titl e></ head>\ n<body bgcol
{ print $0 }

END { print "</pre>\n</body>\n</htm>" }

And the command to execute is also much more straightforward when using awk instead of sed:

kel ly@ctarine ~/htm > awk -f make-htm -fromtext.awk testfile > file.htm

Awk exampleson your system

Werefer again to the directory containing theinitscriptson your system. Enter acommand similar
to the following to see more practical examples of the widely spread usage of the awk command:

grep awk /etc/init.d/*

The printf program

For more precise control over the output format than what is normally provided by print, use printf. The
printf command can be used to specify the field width to use for each item, as well as various formatting
choices for numbers (such as what output base to use, whether to print an exponent, whether to print a
sign, and how many digits to print after the decimal point). Thisis done by supplying a string, called the
format string, that controls how and where to print the other arguments.

The syntax is the same as for the C-language printf statement; see your C introduction guide. The gawk
info pages contain full explanations.

Summary

The gawk utility interprets a specia-purpose programming language, handling simple data-reformatting
jobswith just afew lines of code. It isthe free version of the general UNIX awk command.

This tools reads lines of input data and can easily recognize columned output. The print program is the
most common for filtering and formatting defined fields.

On-the-fly variable declaration is straightforward and allows for simple cal culation of sums, statistics and
other operations on the processed input stream. Variables and commands can be put in awk scripts for
background processing.

Other things you should know about awk:

» The language remains well-known on UNIX and alikes, but for executing similar tasks, Perl is now
more commonly used. However, awk has a much steeper learning curve (meaning that you learn alot
in avery short time). In other words, Perl is more difficult to learn.

79

The GNU awk programming language

» Both Perl and awk share the reputation of being incomprehensible, even to the actual authors of the
programs that use these languages. So document your code!

Exercises

These are some practical examples where awk can be useful.
1. For thefirst exercise, your input islinesin the following form:
User name: Fi r st nanme: Last nane: Tel ephone numnber

Make an awk script that will convert such alineto an LDAP record in this format:

dn: ui d=Username, dc=exanple, dc=com
cn: Firstname Lastnane

sn: Last nane

t el ephoneNunber: Tel ephone nunber

Create afile containing a couple of test records and check.

2. Create a Bash script using awk and standard UNIX commands that will show the top three users of
disk space in the/ hone file system (if you don't have the directory holding the homes on a separate
partition, make the script for the/ partition; thisis present on every UNIX system). First, execute the
commands from the command line. Then put them in a script. The script should create sensible output
(sensible as in readable by the boss). If everything proves to work, have the script email its results to
you (usefor instance mail - s Di sk space usage <you@our _conp><result).

If the quota daemon is running, use that information; if not, use find.

3. Create XML-style output from a T ab-separated list in the following form:

Meani ng very long line with a | ot of description
nmeani ng another long |line
ot her meani ng nore | ongline

t est neani ng | 000
The output should read:

<r ow>

<ent r y>Meani ng</ entry>
<entry>

very long line
</entry>

</ row>

<r ow>

<ent r y>neani ng</ entry>
<entry>

long line

80

The GNU awk programming language

</entry>

</ row>

<r ow>

<ent ryot her meani ng</entry>
<entry>

nore | ongline

</entry>

</ row>

<r ow>
<entryt est meani ng</entry>
<entry>

| 000Ng | i ne, but
</entry>

</ row>

Additionally, if you know anything about XML, write aBEGIN and END script to complete the table.
OrdoitinHTML.

81

Chapter 7. Conditional statements

In this chapter we will discuss the use of conditionalsin Bash scripts. This includes the following topics:
* Theif statement

» Using the exit status of a command

» Comparing and testing input and files

* if/then/else constructs

* if/then/dlif/else constructs

» Using and testing the positiona parameters

* Nested if statements

» Boolean expressions

» Using case statements

Introduction to if

General

At times you need to specify different courses of action to be taken in a shell script, depending on the
success or failure of acommand. The if construction alows you to specify such conditions.

The most compact syntax of the if command is:
i f TEST- COWANDS; then CONSEQUENT- COWANDS; fi

The TEST-COMMAND list is executed, and if its return status is zero, the CONSEQUENT-COM -
MANDS list is executed. The return status is the exit status of the last command executed, or zero if no
condition tested true.

The TEST-COM M AND often involves numerical or string comparison tests, but it can also be any com-
mand that returns a status of zero when it succeeds and some other status when it fails. Unary expressions
are often used to examine the status of afile. If the FI LE argument to one of the primariesis of theform/
dev/ f d/ N, then file descriptor “N” is checked. st di n, st dout and st der r and their respectivefile
descriptors may also be used for tests.

Expressions used with if

The table below contains an overview of the so-called “primaries’ that make up the TEST-COMMAND
command or list of commands. These primaries are put between square brackets to indicate the test of a
conditional expression.

Table7.1. Primary expressions

Primary M eaning

[-aFILE] Trueif FI LE exists.

[-bFILE] Trueif FI LE exists and is a block-specia file.
[-c FILE] Trueif FI LE exists and is a character-special file.

82

Conditional statements

Primary M eaning

[-dFILE] Trueif FI LE exists and isa directory.

[-eFILE] Trueif FI LE exists.

[-f FILE] Trueif FI LE existsand isaregular file.

[-g FILE] Trueif FI LE exists and its SGID bit is set.

[-hFILE] Trueif FI LE exists and isa symbolic link.

[-k FILE] Trueif FI LE exists and its sticky bhit is set.

[-p FILE] Trueif FI LE exists and is anamed pipe (FIFO).

[-r FILE] Trueif FI LE exists and is readable.

[-s FILE] Trueif FI LE exists and has a size greater than ze-
ro.

[-t FD] Trueif file descriptor FDis open and refersto a
terminal.

[-uFILE] Trueif FI LE exists and its SUID (set user D) bit
IS set.

[-wFI LE] Trueif FI LE exists and iswritable.

[-x FILE] Trueif FI LE exists and is executable.

[-OFI LE] Trueif FI LE exists and is owned by the effective
user ID.

[-GFILE] Trueif FI LE exists and is owned by the effective
group ID.

[-LFILE] Trueif FI LE exists and isa symbolic link.

[-NFILE] Trueif FI LE exists and has been modified since it
was last read.

[-SFILE] Trueif FI LE existsand is a socket.

[FILEL-nt FILE2]

Trueif FI LE1 has been changed more recently
than FI LE2, or if FI LE1 existsand FI LE2 does
not.

[FILEL-ot FILE2]

Trueif FI LE1 isolder than FI LE2, orisFI LE2
existsand FI LE1 does not.

[FILEL-ef FILE2]

Trueif FI LE1 and FI LE2 refer to the same de-
vice and inode numbers.

[- 0 OPTIONNAME]

Trueif shell option “OPTIONNAME” is enabled.

[-z STRING]

Trueif the length of “STRING” is zero.

[-nSTRING]or[STRING]

True if thelength of “STRING” is non-zero.

[STRING1 == STRING2]

Trueif the strings are equal. “=" may be used in-
stead of “==" for strict POSIX compliance.

[STRING1 != STRING2]

True if the strings are not equal .

[STRING1 < STRING2]

Trueif “STRING1” sorts before “STRING2” lexi-
cographically in the current locale.

[STRING1 > STRING2]

Trueif “STRING1" sorts after “STRING2” lexico-
graphically in the current locale.

83

Conditiona statements

Primary Meaning

[ARG1OPARG2] “OP’ isoneof -eq,-ne,-1t,-1e,-gt or-
ge. These arithmetic binary operators return true
if “ARG1" isequal to, not equal to, less than,
less than or equal to, greater than, or greater than
or equal to “ARG2", respectively. “ARG1” and
“ARG2" areintegers.

Expressions may be combined using the following operators, listed in decreasing order of precedence:

Table 7.2. Combining expressions

Operation Effect

[VEXPR] Trueif EXPR isfase.

[(EXPR)] Returns the value of EXPR. This may be used to
override the normal precedence of operators.

[EXPR1 -aEXPR2] Trueif both EXPR1 and EXPR2 are true.

[EXPR1 -0 EXPR2] Trueif either EXPR1 or EXPR2 istrue.

The [(or test) built-in evaluates conditional expressions using a set of rules based on the number of ar-
guments. More information about this subject can be found in the Bash documentation. Just like the if is
closed with fi, the opening square bracket should be closed after the conditions have been listed.

Commands following the then statement

The CONSEQUENT-COMMANDS list that follows the then statement can be any valid UNIX com-
mand, any executable program, any executable shell script or any shell statement, with the exception of
the closing fi. It isimportant to remember that the then and fi are considered to be separated statements
in the shell. Therefore, when issued on the command line, they are separated by a semi-colon.

In a script, the different parts of the if statement are usually well-separated. Below, a couple of simple
examples.

Checking files

Thefirst example checks for the existence of afile:

anny ~> cat nsgcheck. sh
#1/ bi n/ bash

echo "This scripts checks the existence of the nessages file."
echo "Checking..."
if [-f /var/log/messages]

t hen

echo "/var/| og/ nessages exists."

fi
echo
echo "...done."

anny ~> ./msgcheck. sh
This scripts checks the existence of the nmessages file.

84

Conditiona statements

Checki ng. . .
/var/| og/ messages exists.

...done.

Checking shell options

To add in your Bash configuration files:

These lines will print a nessage if the nocl obber option is set:
if [-o nocl obber]
t hen

echo "Your files are protected agai nst accidental overwiting using redirection."”
fi

The environment

The above example will work when entered on the command line;

anny ~> if [-0 noclobber] ; then echo ; echo "your files are protected
agai nst overwriting." ; echo ; fi

your files are protected agai nst overwriting.

anny ~>

However, if you usetesting of conditionsthat depend on the environment, you might get different

results when you enter the same command in a script, because the script will open a new shell,
in which expected variables and options might not be set automatically.

Simple applications of if

Testing exit status

The ? variable holds the exit status of the previously executed command (the most recently completed
foreground process).

The following example shows a simple test:

anny ~> if [$? -eq 0]

More input> then echo ' That was a good job!'
More input> fi

That was a good j ob!

anny ~>

The following example demonstrates that TEST-COM MANDS might be any UNIX command that re-
turns an exit status, and that if again returns an exit status of zero:

85

Conditiona statements

anny ~> if ! grep $USER /etc/passwd
More input> then echo "your user account is not managed |locally"; f
your user account is not managed | ocally

anny > echo $?
0

anny >

The same result can be obtained as follows:

anny > grep $USER /et c/ passwd

anny > if [$? -ne 0] ; then echo "not a |ocal account" ; f
not a | ocal account

anny >
Numeric comparisons

The examples below use numerical comparisons:

anny > nume we -1 work.txt®

anny > echo $num
201

anny > if ["$nuni -gt "150"]
More input> then echo ; echo "you've worked hard enough for today."
More input> echo ; f

you' ve wor ked hard enough for today.

anny >
This script is executed by cron every Sunday. If the week number is even, it reminds you to put out the

garbage cans:

#1/ bi n/ bash
Cal cul ate the week nunber using the date command:
WEEKOFFSET=$[$(date +"%W") %2]

Test if we have a remminder. |If not, this is an even week so send a nessage.
El se, do nothi ng.

if [$WEEKOFFSET -eq "0"]; then
echo "Sunday evening, put out the garbage cans.” | mail -s "Garbage cans out"
f

86

Conditiona statements

String comparisons

An example of comparing strings for testing the user 1D:

if ["$(whoam)" !'="'root']; then
echo "You have no perm ssion to run $0 as non-root user."
exit 1;

fi

With Bash, you can shorten this type of construct. The compact equivalent of the above test is asfollows:

["$(whoam)" !'="root'] && (echo you are using a non-privileged account; exit 1

Similar to the “&&” expression which indicates what to do if the test proves true, “||" specifies what to
doif thetest isfalse.

Regular expressions may also be used in comparisons:

anny > gender="fenal "

anny > if [["$gender" == f*]]

More input> then echo "Pleasure to neet you, Madane."; f
Pl easure to neet you, Madane.

anny >

Real Programmers

Most programmers will prefer to use the test built-in command, which is equivalent to using
square brackets for comparison, like this:

test "$(whoanm)" !'= 'root' && (echo you are using a non-privileged account; exi
No exit?

If you invoke the exit in a subshell, it will not pass variables to the parent. Use{ and } instead
of (and) if you do not want Bash to fork a subshell.

See theinfo pages for Bash for more information on pattern matching with the “ ((EXPRESSION))” and
“[[EXPRESSION]]” constructs.

More advanced if usage

iIf/then/else constructs

Dummy example

Thisisthe construct to use to take one course of action if the if commands test true, and another if it tests
false. An example:

87

Conditiona statements

freddy scripts> gender="nul e"

freddy scripts> if [["$gender" == "f*"]]

More input> then echo "Pleasure to nmeet you, Madane."

More input> el se echo "How cone the | ady hasn't got a drink yet?"
More input> fi

How come the lady hasn't got a drink yet?

freddy scripts>

[1 vs. [[I]

Contraryto[,[[preventsword splitting of variablevalues. So, if VAR="var wi t h spaces",
you do not need to double quote $VAR in atest - eventhough using quotes remains a good habit.
Also, [[prevents pathname expansion, so literal strings with wildcards do not try to expand to
filenames. Using [[, == and ! = interpret stringsto the right as shell glob patterns to be matched
against the value to the left, for instance: [["val ue" == val*]].

Likethe CONSEQUENT-COMMANDS ist following thethen statement, the ALTERNATE-CONSE-
QUENT-COMMANDS Iist following the el se statement can hold any UNIX-style command that returns
an exit status.

Another example, extending the one from the section called “ Testing exit status’:

anny ~> su -

Passwor d:

[root @l egance root]# if ! grep "$USER /etc/passwd 1> /dev/nul

> then echo "your user account is not managed | ocally"

> el se echo "your account is managed fromthe local /etc/passwd file"
> fi

your account is managed fromthe |l ocal /etc/passwd file

[root @l egance root]#

We switch to the root account to demonstrate the effect of the else statement - your root is usually alocal
account while your own user account might be managed by a central system, such as an LDAP server.

Checking command line arguments

Instead of setting a variable and then executing a script, it is frequently more elegant to put the values for
the variables on the command line.

We use the positional parameters $1, $2, ..., $N for this purpose. $# refers to the number of command
line arguments. $0 refers to the name of the script.

Thefollowing is asimple example:

88

Conditiona statements

Figure 7.1. Testing of a command line argument with if

Here's another example, using two arguments:

anny ~> cat weight.sh
#1/ bi n/ bash

This script prints a nessage about your weight
weight in kilos and height in centineters.

wei ght =" $1"
hei ght =" $2"
i deal wei ght =$[$hei ght - 110]

if [$weight -le $idealweight] ; then
echo "You should eat a bit nmore fat."
el se
echo "You should eat a bit nmore fruit."
f

anny ~> bash -x weight.sh 55 169
+ wei ght =55

if you give it your

89

Conditiona statements

hei ght =169

i deal wei ght =59

"[' 55 -1e 59 ']’

echo 'You should eat a bit nore fat.'
You should eat a bit nore fat.

+
+
+
+

Testing the number of arguments
The following exampl e shows how to change the previous script so that it prints a message if more or less
than 2 arguments are given:
anny ~> cat weight.sh

#! / bi n/ bash

This script prints a nessage about your weight if you give it your
weight in kilos and height in centineters.

if [! $# == 2]; then
echo "Usage: $0 weight _in_kilos length_in_centineters"

exit
f
wei ght =" $1"
hei ght =" $2"

i deal wei ght =$[$hei ght - 110]
if [$weight -le $idealweight 1 ; then
echo "You should eat a bit nore fat."
el se
echo "You should eat a bit nmore fruit."
f

anny ~> weight.sh 70 150
You should eat a bit nore fruit.

anny ~> weight.sh 70 150 33
Usage: ./weight.sh weight_in_kilos length_in_centineters

The first argument is referred to as $1, the second as $2 and so on. The total number of arguments is
stored in $#.

Check out the section called “Using the exit statement and if” for a more elegant way to print usage
messages.

Testing that a file exists

Thistest isdonein alot of scripts, because there's no usein starting alot of programsif you know they're
not going to work:

#!/ bi n/ bash

This script gives information about a file.

90

Conditiona statements

FI LENAVE=" $1"
echo "Properties for $FI LENAVE: "

if [-f $FILENAME]; then
echo "Size is $(Is -1h $FILENAVE | awk '{ print $5 }')"
echo "Type is $(file $FILENAME | cut -d":" -f2 -)"
echo "I node nunber is $(Is -i $FILENAME | cut -d" " -f1 -)"
echo "$(df -h $FILENAVE | grep -v Munted | awk '{ print "On", $1", \
which is nounted as the", $6, "partition."}"')"
el se
echo "File does not exist."
fi

Notethat thefileisreferred to using avariable; inthiscaseitisthefirst argument to the script. Alternatively,
when no arguments are given, filelocations are usually stored in variables at the beginning of a script, and
their content is referred to using these variables. Thus, when you want to change afile name in a script,
you only need to do it once.

Filenames with spaces

The above example will fail if the value of $1 can be parsed as multiple words. In that case,
the if command can be fixed either using double quotes around the filename, or by using [[
instead of [.

if/then/elif/else constructs

General
Thisisthe full form of theif statement:
i f TEST- COVWWANDS; t hen
CONSEQUENT- COMVANDS,;
el i f MORE- TEST- COVWANDS; t hen
MORE- CONSEQUENT- COVIVANDS;
el se ALTERNATE- CONSEQUENT- COMVANDS;
fi

The TEST-COMMANDS list is executed, and if its return status is zero, the CONSEQUENT-COM -
MANDS list is executed. If TEST-COMMANDS returns a non-zero status, each €lif list is executed
in turn, and if its exit status is zero, the corresponding MORE-CONSEQUENT-COMMANDS is ex-
ecuted and the command completes. If else is followed by an ALTERNATE-CONSEQUENT-COM -
MANDS ligt, and the final command in the fina if or €lif clause has anon-zero exit status, then ALTER-
NATE-CONSEQUENT-COMMANDS is executed. The return status is the exit status of the last com-
mand executed, or zero if no condition tested true.

Example

Thisis an example that you can put in your crontab for daily execution:

91

Conditiona statements

anny /etc/cron.daily> cat disktest.sh
#1/ bi n/ bash

This script does a very sinple test for checking di sk space.

space="df -h | awk '{print $5}' | grep %| grep -v Use | sort -n | tail -1 | cut -
al ertval ue="80"

if ["$space" -ge "S$alertvalue"]; then

echo "At | east one of ny disks is nearly full!" | mail -s "daily di skcheck” root
el se
echo "Di sk space normal™ | mail -s "daily di skcheck” root

fi
Nested if statements

Inside the if statement, you can use another if statement. Y ou may use as many levels of nested ifs asyou
can logically manage.

Thisis an example testing leap years:

anny ~/testdir> cat testleap.sh
#!/ bi n/ bash
This script will test if we're in a |leap year or not.

year = date +%r

if [$[$year % 400] -eq "0"]; then
echo "This is a leap year. February has 29 days."
elif [$[Syear % 4] -eq 0]; then
if [$[$year % 100] -ne 0]; then
echo "This is a |l eap year, February has 29 days."
el se
echo "This is not a |leap year. February has 28 days."
f
el se
echo "This is not a | eap year. February has 28 days."
f

anny ~/testdir> date
Tue Jan 14 20: 37:55 CET 2003

anny ~/testdir> testleap.sh
This is not a | eap year.

Boolean operations

The above script can be shortened using the Boolean operators “AND” (&&) and “OR” (|)).

92

Conditiona statements

Figure 7.2. Example using Boolean operators

We use the double brackets for testing an arithmetic expression, see the section called “ Arithmetic expan-
sion”. Thisis equivaent to the let statement. You will get stuck using square brackets here, if you try
something like $[$year % 400], because here, the square brackets don't represent an actual command by
themselves.

Among other editors, gvim is one of those supporting colour schemes according to the file format; such
editors are useful for detecting errorsin your code.

Using the exit statement and if

We already briefly met the exit statement in the section called “ Testing the number of arguments’. It ter-
minates execution of the entire script. It ismost often used if theinput requested from the user isincorrect,
if a statement did not run successfully or if some other error occurred.

The exit statement takes an optional argument. This argument is the integer exit status code, which is
passed back to the parent and stored in the $? variable.

A zero argument means that the script ran successfully. Any other value may be used by programmers to
pass back different messages to the parent, so that different actions can be taken according to failure or
success of the child process. If no argument is given to the exit command, the parent shell uses the current
value of the $? variable.

Below is an example with a slightly adapted pengui n. sh script, which sendsiits exit status back to the
parent, f eed. sh:

anny ~/testdir> cat penguin.sh
#1/ bi n/ bash

93

Conditiona statements

This script lets you present different menus to Tux. He will only be happy
when given a fish. W' ve also added a dol phin and (presumably) a canel.

if ["$menu" == "fish"]; then

if ["$animal" == "penguin"]; then
echo "Hhmmmmmm fish... Tux happy!"

elif ["$animal" == "dol phin"]; then
echo "Pweet peettreetppeterdepweet!”

el se
echo "*prrrrrrrt*"

f

el se

if ["$animal" == "penguin"]; then
echo "Tux don't like that. Tux wants fish!"
exit 1

elif ["$animal" == "dol phin"]; then
echo "Pweepw shpeet er depweet ! "
exit 2

el se
echo "WIIl you read this sign?!l'"
exit 3

f
f

This script is called upon in the next one, which therefore exportsits variables nenu and ani nal :

anny ~/testdir> cat feed.sh
#1/ bi n/ bash
This script acts upon the exit status given by penguin.sh

export nmenu="$1"
export ani mal ="$2"

f eed="/net honme/ anny/ t est di r/ pengui n. sh"
$f eed $nmenu $ani mal
case $? in

1)
echo "CGuard: You' d better give'ma fish, less they get violent..."

2)
echo "CGuard: It's because of people like you that they are |eaving earth al

3)

echo "CGuard: Buy the food that the Zoo provides for the animals, you *** how

do you think we survive?"

*)
echo "CGuard: Don't forget the guide!™

94

Conditiona statements

esac

anny ~/testdir> ./feed.sh apple penguin
Tux don't like that. Tux wants fish!
Guard: You'd better give'ma fish, less they get violent...

Asyou can see, exit status codes can be chosen freely. Existing commands usually have a series of defined
codes; see the programmer's manual for each command for more information.

Using case statements

Simplified conditions

Nested if statements might be nice, but as soon as you are confronted with a couple of different possible
actionsto take, they tend to confuse. For the more complex conditionals, use the case syntax:

case EXPRESSION in CASE1l) COWAND- LI ST;; CASE2) COWAND-LIST;;
CASEN) COWMAND- LI ST; ; esac

Each case is an expression matching a pattern. The commands in the COMMAND-LIST for the first
match are executed. The“|” symbol isused for separating multiple patterns, and the“)” operator terminates
apattern list. Each case plusits according commands are called a clause. Each clause must be terminated
with “;;”. Each case statement is ended with the esac statement.

In the example, we demonstrate use of cases for sending a more selective warning message with the
di skt est. sh script:

anny ~/testdir> cat disktest.sh
#1/ bi n/ bash

This script does a very sinple test for checking di sk space.
space="df -h | awk '{print $5}' | grep %| grep -v Use | sort -n | tail -1 | cut -
case $space in

[1-6]%)
Message="All is quiet."

[7-8]%)

Message="Start thinking about cleaning out some stuff. There's a partition that
9[1-8])

Message="Better hurry with that new disk... One partition is $space %full."
99)

Message="1"'m drowni ng here! There's a partition at $space %"
*) a

Message="1 seemto be running with an nonexi stent amount of disk space..."
esac
echo $Message | mail -s "disk report “date " anny

95

Conditiona statements

anny ~/testdir>
You have new mail .

anny ~/testdir> tail -16 /var/spool/mil/anny

From anny@ct arine Tue Jan 14 22:10:47 2003

Ret ur n- Pat h: <anny@ct ari ne>

Recei ved: from octarine (local host [127.0.0.1])
by octarine (8.12.5/8.12.5) with ESMIP id hOELAl B&020414
for <anny@ctarine>; Tue, 14 Jan 2003 22:10:47 +0100

Recei ved: (from anny@ ocal host)
by octarine (8.12.5/8.12.5/Submit) id hOELAl tn020413
for anny; Tue, 14 Jan 2003 22:10: 47 +0100

Date: Tue, 14 Jan 2003 22:10:47 +0100

From Anny <anny@ctari ne>

Message-1d: <200301142110. hOELAI t n020413@ct ari ne>

To: anny@ctarine

Subj ect: disk report Tue Jan 14 22:10:47 CET 2003

Start thinking about cleaning out some stuff. There's a partition that is 87 %fu

anny ~/testdir>

Of course you could have opened your mail program to check the results; thisis just to demonstrate that
the script sends a decent mail with “To:”, “ Subject:” and “From:” header lines.

Many more exampl es using case statements can be found in your system'sinit script directory. The startup
scripts use start and stop cases to run or stop system processes. A theoretical example can be found in
the next section.

Initscript example

Initscripts often make use of case statements for starting, stopping and querying system services. Thisis
an excerpt of the script that starts Anacron, a daemon that runs commands periodically with a frequency
specified in days.

case "$1" in
start)
start

st op)
stop

st at us)

status anacron
restart)

stop

start

condrestart)

96

Conditiona statements

if test "x pidof anacron " != x; then
st op
start

fi

*)
echo $"Usage: $0 {start|stop|restart|condrestart]|status}"”
exit 1

esac

Thetasksto executein each case, such as stopping and starting the daemon, are defined in functions, which
are partially sourced fromthe/ etc/rc. d/init.d/functi ons file. See Chapter 11, Functions for
more explanation.

Summary

Inthischapter welearned how to build conditionsinto our scripts so that different actions can be undertaken
upon success or failure of acommand. The actions can be determined using the if statement. This allows
you to perform arithmetic and string comparisons, and testing of exit code, input and files needed by the
script.

A simpleif/then/fi test often preceeds commandsin ashell script in order to prevent output generation, so
that the script can easily be run in the background or through the cron facility. More complex definitions
of conditions are usually put in a case statement.

Upon successful condition testing, the script can explicitly inform the parent using the exit 0 status. Upon
failure, any other number may be returned. Based on the return code, the parent program can take appro-
priate action.

Exercises

Here are some ideas to get you started using if in scripts:

1. Use an if/then/elif/else construct that prints information about the current month. The script should
print the number of days in this month, and give information about leap years if the current month is
February.

2. Do the same, using a case statement and an alternative use of the date command.

3. Modify / et ¢/ profi | e sothat you get aspecial greeting message when you connect to your system
as root.

4. Edit the | eapt est . sh script from the section called “Boolean operations’ so that it requires one
argument, the year. Test that exactly one argument is supplied.

5. Write a script called whi chdaenon. sh that checks if the httpd and init daemons are running on
your system. If an httpd is running, the script should print a message like, “This machine is running
aweb server.” Use psto check on processes.

6. Write a script that makes a backup of your home directory on a remote machine using scp. The script
should report in alog file, for instance ~/ | og/ honmebackup. | og. If you don't have a second ma-
chineto copy the backup to, use scp to test copying it to the localhost. Thisrequires SSH keys between

97

Conditiona statements

the two hosts, or else you have to supply a password. The creation of SSH keys is explained in man
ssh- keygen.

. Adapt the script from the first examplein the section called “ Simplified conditions’ to include the case
of exactly 90% disk space usage, and lower than 10% disk space usage.

The script should use tar cf for the creation of the backup and gzip or bzip2 for compressing the
. tar file. Put all filenamesin variables. Put the name of the remote server and the remote directory in
avariable. Thiswill make it easier to re-use the script or to make changesto it in the future.

The script should check for the existence of acompressed archive. If this exists, removeit first in order
to prevent output generation.

The script should a so check for available diskspace. Keep in mind that at any given moment you could
have the datain your home directory, the datainthe. t ar file and the data in the compressed archive
all together on your disk. If there is not enough diskspace, exit with an error message in the log file.

The script should clean up the compressed archive before it exits.

98

Chapter 8. Writing interactive scripts

In this chapter we will discuss how to interact with the users of our scripts:
 Printing user friendly messages and explanations

* Catching user input

» Prompting for user input

 Using thefile descriptors to read from and write to multiple files
Displaying user messages

Interactive or not?

Some scriptsrun without any interaction from the user at all. Advantages of non-interactive scriptsinclude:
» The script runsin a predictable way every time.
» The script can run in the background.

Many scripts, however, require input from the user, or give output to the user as the script isrunning. The
advantages of interactive scripts are, among others:

» Moreflexible scripts can be built.
» Users can customize the script asit runs or make it behave in different ways.
» The script can report its progress asiit runs.

When writing interactive scripts, never hold back on comments. A script that prints appropriate messages
is much more user-friendly and can be more easily debugged. A script might do a perfect job, but you will
get awhole lot of support callsif it does not inform the user about what it is doing. So include messages
that tell the user to wait for output because acalculation is being done. If possible, try to give an indication
of how long the user will have to wait. If the waiting should regularly take along time when executing a
certain task, you might want to consider integrating some processing i ndication in the output of your script.

When prompting the user for input, it is also better to give too much than too little information about
the kind of data to be entered. This applies to the checking of arguments and the accompanying usage
message as well.

Bash has the echo and printf commands to provide comments for users, and athough you should be
familiar with at least the use of echo by now, we will discuss some more examplesin the next sections.

Using the echo built-in command

The echo built-in command outputs its arguments, separated by spaces and terminated with a newline
character. The return status is always zero. echo takes a couple of options:

o - e: interprets backslash-escaped characters.
* - n: suppresses thetrailing newline.

As an example of adding comments, we will make the f eed. sh and pengui n. sh from the section
called “Checking command line arguments” a bit better:

99

Writing interactive scripts

m chel ~/test> cat penguin.sh
#1/ bi n/ bash

This script lets you present different menus to Tux. He will only be happy

when given a fish. To make it nore fun, we added a couple nore animals.

if ["$menu" == "fish"]; then
if ["$animal" == "penguin"]; then
echo -e "Hymmmmm fish... Tux happy!\n"
elif ["$animal" == "dol phin"]; then

echo -e "\a\a\aPweet peettreetppeterdepweet!\alala\n”
el se

echo -e "*prrrrrrrt*\n”

f

el se

if ["$animal" == "penguin"]; then
echo -e "Tux don't like that. Tux wants fish!\n"
exit 1

elif ["$animal" == "dol phin"]; then
echo -e "\a\ala\la\a\aPweepw shpeet erdepweet !\ a\a\a"
exit 2

el se
echo -e "WII you read this sign?! Don't feed the "$animl"s!\n"
exit 3

f

f

m chel ~/test> cat feed.sh

#1/ bi n/ bash

This script acts upon the exit status given by penguin.sh

if ["$#" 1'="2"], then
echo -e "Usage of the feed script:\t$0 food-on-nenu ani nal - name\ n"
exit 1

el se

export nmenu="$1"
export ani mal ="$2"

echo -e "Feeding $nenu to $animal...\n"
f eed="/net honme/ anny/ t est di r/ pengui n. sh"
$f eed $nmenu $ani mal

resul t="$?"
echo -e "Done feeding.\n"

case "$result" in

1)

echo -e "CGuard: \"You' d better give'ma fish, less they get violent..

100

\"\n"

Writing interactive scripts

2)
echo -e "CGuard: \"No wonder they flee our planet...\"\n"
3)
echo -e "CGuard: \"Buy the food that the Zoo provides at the entry, you ***\"\n
echo -e "Guard: \"You want to poison them do you?\"\n"
*) v
echo -e "CGuard: \"Don't forget the guide!\"\n"
esac

fi

echo "Leaving..."
echo -e "\a\a\aThanks for visiting the Zoo, hope to see you again soon!\n"

m chel ~/test> feed.sh apple canel
Feedi ng apple to canel. ..

WIIl you read this sign?! Don't feed the canels!

Done feedi ng.

Guard: "Buy the food that the Zoo provides at the entry, you ***"
Guard: "You want to poison them do you?"

Leavi ng. ..
Thanks for visiting the Zoo, hope to see you agai n soon!

m chel ~/test> feed.sh apple
Usage of the feed script: ./ feed.sh food-on-nmenu ani nal - nane

More about escape characters can be found in the section called “ Escape characters’. The following table
gives an overview of sequences recognized by the echo command:

Table 8.1. Escape sequences used by the echo command

Sequence M eaning

\a Alert (bell).

\b Backspace.

\c Suppress trailing newline.
\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

101

Writing interactive scripts

Sequence M eaning

\\ Backslash.

\ONNN The eight-bit character whose valueis the octal
value NNN (zero to three octal digits).

\NNN The eight-bit character whose valueis the octal
value NNN (oneto three octal digits).

\XxHH The eight-bit character whose value is the hexa-
decimal value (one or two hexadecimal digits).

For more information about the printf command and the way it allows you to format output, see the Bash
info pages. Keep in mind that there might be differences between different versions of Bash.

Catching user input

Using the read built-in command

Theread built-in command is the counterpart of the echo and printf commands. The syntax of the read
command is as follows:

read [options] NAMEL NAMVE2 ... NAMEN

One lineis read from the standard input, or from the file descriptor supplied as an argument to the - u
option. The first word of the line is assigned to the first name, NAMEL, the second word to the second
name, and so on, with leftover words and their intervening separators assigned to the last name, NAMVEN. If
there are fewer words read from the input stream than there are names, the remaining names are assigned
empty values.

The characters in the value of the | FS variable are used to split the input line into words or tokens; see
the section called “Word splitting”. The backslash character may be used to remove any special meaning
for the next character read and for line continuation.

If no names are supplied, the lineread is assigned to the variable REPLY.

Thereturn code of ther ead command is zero, unless an end-of-file character is encountered, if read times
out or if aninvalid file descriptor is supplied as the argument to the - u option.

The following options are supported by the Bash read built-in:

Table 8.2. Optionsto theread built-in

Option M eaning

-a ANAMVE The words are assigned to sequential indexes of
the array variable ANAME, starting at 0. All ele-
ments are removed from ANAME before the assign-
ment. Other NAME arguments are ignored.

-d DELI M Thefirst character of DELI Mis used to terminate
theinput line, rather than newline.

-e readlineis used to obtain the line.

-n NCHARS read returns after reading NCHARS characters
rather than waiting for a complete line of input.

102

Writing interactive scripts

Option M eaning

-p PROVPT Display PROVPT, without atrailing newline, be-
fore attempting to read any input. The prompt is
displayed only if input is coming from aterminal.

-r If this option is given, backslash does not act as an
escape character. The backdash is considered to be
part of the line. In particular, a backslash-newline
pair may not be used as aline continuation.

-S Silent mode. If input is coming from aterminal,
characters are not echoed.

-t TI MEQUT Cause read to time out and return failure if acom-
plete line of input is not read within TI MEQUT
seconds. This option has no effect if read is not
reading input from the terminal or from a pipe.

-uFD Read input from file descriptor FD.

Thisisastraightforward example, improving on the | eapt est . sh script from the previous chapter:

m chel ~/test> cat |eaptest.sh
#!/ bi n/ bash
This script will test if you have given a | eap year or not.

echo "Type the year that you want to check (4 digits), followed by [ENTER]:"

read year
if ((("$year” %400) == "0")) || ((("$year” %4 == "0") && ("$year” % 100 !=
"0"))); then
echo "$year is a |leap year."
el se

echo "This is not a | eap year."
fi
m chel ~/test> | eaptest.sh
Type the year that you want to check (4 digits), followed by [ENTER]:

2000
2000 is a | eap year.

Prompting for user input

The following example shows how you can use prompts to explain what the user should enter.

m chel ~/test> cat books. sh
#! / bi n/ bash

This is a programthat creates a favorite book library.
books="books. t xt "

echo "Hello, "$USER'. This script will add your favorite book to the database."

103

Writing interactive scripts

echo -n "Enter the title and press [ENTER]: "

read title

echo -n "Enter the name of the author and press [ENTER]:
read aut hor

echo

grep -i "$title" "$books"

if [$2 == 0]; then
echo "You have already suggested a book, quitting."
exit 1
elif ["$author" == "shakespeare"]; then
echo "What's in a nane? That which we call a rose by any other name would snell
exit 1

el se
echo -n "Enter the cost and press [ENTER]: "
read cost

if [$cost -1t 25]; then
echo "$title | $author | $cost" >> "$books"
echo "Your book is added to the database. Thank you so much!™"
el se
echo "Let nme |ook for $title by $Sauthor at the library."”
exit 1
fi
fi

m chel ~/test> cp books.sh /var/tnp; cd /var/tnp
m chel ~/test> touch books; chnmod a+w books

m chel ~/test> books. sh

Hell o, michel. This script will add your favorite book to the database.
Enter the title and press [ENTER : 1984

Enter the name of the author and press [ENTER]: Orwell

Enter the cost and press [ENTER]: 30

Let me look for 1984 by Owell at the library.

m chel ~/test> cat books

Note that no output is omitted here. The script only stores information about the books that Michel is
interested in. It will always thank you for your suggestion, unless you already provided it.

Other people can now start executing the script:

[anny@ctarine tnp]$ books. sh

Hell o, anny. This script will add your favorite book to the database.
Enter the title and press [ENTER]: Sense and Sensibility

Enter the nane of the author and press [ENTER]: Austen

Enter the cost and press [ENTER]: 10

Your book is added to the database. Thank you so nuch!

After awhile, the books list beginsto look like this:

104

Writing interactive scripts

Sense and Sensibility | Austen | 10

Harry Potter and the Sorcerer's Stone | Rowing | 20
The Lord of the Rings | Tolkien | 22

To Kill a Mockingbird | Lee | 12

--output omtted--

Of course, thissituationisnot ideal, since everybody can edit (but not delete) Michel'sfiles. Y ou can solve
this problem using special access modes on the script file, see SUID and SGID [http://www.tldp.org/LDP/
intro-linux/html/sect_04 Ol1.html#sect 04 01 06] in the Introduction to Linux guide.

Redirection and file descriptors

General

Asyou know from basic shell usage, input and output of acommand may beredirected beforeit isexecuted,
using a specia notation - the redirection operators - interpreted by the shell. Redirection may also be used
to open and close files for the current shell execution environment.

Redirection can also occur in a script, so that it can receive input from afile, for instance, or send output
to afile. Later, the user can review the output file, or it may be used by another script as input.

File input and output are accomplished by integer handles that track all open files for a given process.
These numeric values are known as file descriptors. The best known file descriptors are stdin, stdout and
stderr, with file descriptor numbers O, 1 and 2, respectively. These numbers and respective devices are
reserved. Bash can take TCP or UDP ports on networked hosts as file descriptors as well.

The output below shows how the reserved file descriptors point to actual devices:

m chel ~>1s -1 /dev/std*

[rwxrwxrwx 1 root r oot 17 Oct 2 07:46 /dev/stderr -> ../proc/self/fd/2
[rwxrwxrwx 1 root r oot 17 Oct 2 07:46 /dev/stdin -> ../proc/self/fd/0
[rwxrwxrwx 1 root r oot 17 Oct 2 07:46 /dev/stdout -> ../proc/self/fd/1l
mchel ~>1s -1 /proc/self/fd/[0-2]

[rwx------ 1 mchel mchel 64 Jan 23 12:11 /proc/self/fd/0 -> /dev/pts/6

[rwx------ 1 mchel mchel 64 Jan 23 12:11 /proc/self/fd/1 -> /dev/pts/6

[rwx------ 1 mchel mchel 64 Jan 23 12:11 /proc/self/fd/2 -> /[dev/pts/6

Note that each process hasits own view of thefilesunder / pr oc/ sel f , asit isactually a symbolic link
to/ proc/ <process_| D>.

Y ou might want to check info MAKEDEV and info proc for more information about / pr oc subdirec-
tories and the way your system handles standard file descriptors for each running process.

When excuting a given command, the following steps are excuted, in order:

« If the standard output of a previous command is being piped to the standard input of the current com-
mand, then/ pr oc/ <curr ent _process_| D>/ f d/ 0 isupdated to target the same anonymous pipe
as/ proc/ <previ ous_process_| D/ fd/ 1.

« If the standard output of the current command is being piped to the standard input of the next command,
then/ proc/ <current _process_| D>/ fd/ 1 isupdated to target another anonymous pipe.

105

http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06
http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06
http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06

Writing interactive scripts

 Redirection for the current command is processed from left to right.

» Redirection “N>&M” or “N<&M" after acommand has the effect of creating or updating the symbolic
link / proc/ sel f/fd/ Nwith the same target asthe symbolic link / pr oc/ sel f/fd/ M

» The redirections “N> file” and “N< file" have the effect of creating or updating the symbolic link /
proc/ sel f/fd/ Nwith the target file.

* File descriptor closure “N>&-" has the effect of deleting the symbolic link / pr oc/ sel f/fd/ N.
* Only now isthe current command executed.

When you run a script from the command line, nothing much changes because the child shell process will
use the same file descriptors as the parent. When no such parent is available, for instance when you run
a script using the cron facility, the standard file descriptors are pipes or other (temporary) files, unless
some form of redirection is used. This is demonstrated in the example below, which shows output from
asimple at script;

m chel ~> date
Fri Jan 24 11:05:50 CET 2003

m chel ~> at 1107

war ni ng: conmands will be executed using (in order)
a) $SHELL b) login shell c¢)/bin/sh

at>|ls -1 /proc/self/fd/ > /var/tnp/fdtest. at

at > <EOT>

job 10 at 2003-01-24 11:07

m chel ~> cat /var/tnp/fdtest. at

total O

lr-x------ 1 mchel mchel 64 Jan 24 11:07 0 -> /var/spool/at/!0000c010959eb (
[-wx------ 1 mchel mchel 64 Jan 24 11:07 1 -> /var/tnp/fdtest. at

[-wx------ 1 mchel mchel 64 Jan 24 11:07 2 -> /var/spool/at/spool/a0000c0109
lr-x------ 1 mchel mchel 64 Jan 24 11:07 3 -> /proc/21949/fd

And one with cron:

nm chel ~> crontab -1

DO NOT EDIT TH S FILE - edit the master and reinstall.

(/tnp/crontab. 21968 installed on Fri Jan 24 11:30:41 2003)
(Cron version -- $I1d$)

32 11 * * * |s -1 /[proc/self/fd/ > /var/tnp/fdtest.cron

nm chel ~> cat /var/tnp/fdtest.cron

total O

[r-x------ 1 michel mchel 64 Jan 24 11:32 0 -> pipe:[124440]

[-wx------ 1 mchel michel 64 Jan 24 11:32 1 -> /var/tnp/fdtest.cron
[-wWx------ 1 michel mchel 64 Jan 24 11:32 2 -> pipe:[124441]
[r-x------ 1 michel mchel 64 Jan 24 11:32 3 -> /proc/21974/fd

Redirection of errors

From the previous examples, it is clear that you can provide input and output files for a script (see the
section called “File input and output” for more), but some tend to forget about redirecting errors - output

106

Writing interactive scripts

which might be depended upon later on. Also, if you are lucky, errors will be mailed to you and eventual
causes of failure might get revealed. If you are not as lucky, errors will cause your script to fail and won't
be caught or sent anywhere, so that you can't start to do any worthwhile debugging.

When redirecting errors, note that the order of precedence is significant. For example, this command,
issuedin/ var/ spool

s -1 * 2> [var/tnp/unaccessi bl e-i n-spool

will redirect standard output of the |s command to thefileunaccessi bl e-i n- spool in/var/tnp.
The command

Is -1 * > [var/tnp/spoollist 2>&1

will direct both standard input and standard error to thefile spool | i st . The command

s -1 * 2 >& 1 > /var/tnp/spoollist

directs only the standard output to the destination file, because the standard error is copied to standard
output before the standard output is redirected.

For convenience, errorsare oftenredirected to/ dev/ nul |, if itissurethey will not be needed. Hundreds
of examples can be found in the startup scripts for your system.

Bash allowsfor both standard output and standard error to be redirected to the file whose nameisthe result
of the expansion of FI LE with this construct:

&> FILE

Thisisthe equivalent of > FI LE 2>& 1, the construct used in the previous set of examples. It isaso often
combined with redirection to / dev/ nul | , for instance when you just want a command to execute, no
matter what output or errorsit gives.

File input and output
Using /dev/fd

The / dev/ f d directory contains entries named 0, 1, 2, and so on. Opening the file / dev/ fd/ N is
equivalent to duplicating file descriptor N. If your system provides/ dev/ st di n,/ dev/ st dout and
/ dev/ st derr, youwill seethat these areequivalentto/ dev/ fd/ 0,/ dev/fd/ 1 and/ dev/fd/ 2,
respectively.

Themain use of the/ dev/ f d filesis from the shell. This mechanism allows for programs that use path-
name arguments to handle standard input and standard output in the same way as other pathnames. If /
dev/ f d is not available on a system, you'll have to find away to bypass the problem. This can be done
for instance using a hyphen (-) to indicate that a program should read from a pipe. An example:

mchel ~> filter body.txt.gz | cat header.txt - footer.txt
This text is printed at the beginning of each print job and thanks the sysadm n
for setting us up such a great printing infrastructure.

Text to be filtered.

107

Writing interactive scripts

This text is printed at the end of each print job.

The cat command first reads the file header . t xt , next its standard input which is the output of the
filter command, and last the f oot er . t xt file. The special meaning of the hyphen as a command-line
argument to refer to the standard input or standard output is a misconception that has crept into many
programs. There might also be problems when specifying hyphen as the first argument, since it might be
interpreted as an option to the preceding command. Using / dev/ f d alows for uniformity and prevents
confusion:

mchel ~> filter body.txt | cat header.txt /dev/fd/0O footer.txt | Ip

In this clean example, all output is additionally piped through Ip to send it to the default printer.
Read and exec

Assigning file descriptors to files

Another way of looking at file descriptorsis thinking of them as away to assign a numeric valueto afile.
Instead of using the file name, you can use the file descriptor number. The exec built-in command can
be used to replace the shell of the current process or to alter the file descriptors of the current shell. For
example, it can be used to assign afile descriptor to afile. Use

exec fdN> file
for assigning file descriptor N tof i | e for output, and
exec fdN< file

for assigning file descriptor Nto f i | e for input. After afile descriptor has been assigned to afile, it can

be used with the shell redirection operators, as is demonstrated in the following example:

m chel ~> exec 4> result.txt

m chel ~> filter body.txt | cat header.txt /dev/fd/0 footer.txt >& 4

m chel ~> cat result.txt

This text is printed at the beginning of each print job and thanks the sysadm n
for setting us up such a great printing infrastructure.

Text to be filtered.

This text is printed at the end of each print job.

File descriptor 5
Using this file descriptor might cause problems, see the Advanced Bash-Scripting Guide [http://
www.tldp.org/L DP/abs/htmi/io-redirection.html], chapter 16. Y ou are strongly advised not to use
it.

Read in scripts

Thefollowing is an example that shows how you can alternate between file input and command lineinpuit:

108

http://www.tldp.org/LDP/abs/html/io-redirection.html
http://www.tldp.org/LDP/abs/html/io-redirection.html
http://www.tldp.org/LDP/abs/html/io-redirection.html

Writing interactive scripts

m chel ~/testdir> cat sysnotes.sh
#1/ bi n/ bash

This script makes an index of inportant config files, puts themtogether
a backup file and allows for adding comrent for each file.

CONFI G=/ var / t mp/ sysconfi g. out
rm " $CONFI G' 2>/ dev/ nul

echo "Qutput will be saved in $CONFIG "

create fd 7 with sane target as fd 0 (save stdin "val ue")
exec 7<&0

update fd O to target file /etc/passwd
exec < /etc/passwd

Read the first line of /etc/passwd
read root passwd

echo "Saving root account info..."
echo "Your root account info:" >> "$CONFI G'
echo $root passwd >> "$CONFI G'

update fd O to target fd 7 target (old fd O target); delete fd 7
exec 0<&7 7<&

echo -n "Enter conmment or [ENTER] for no conmment: "
read comment; echo $coment >> "$CONFI G'

echo "Saving hosts information..."

first prepare a hosts file not containing any conments
TEMP="/var/tnp/ hosts.tnp"
cat /etc/hosts | grep -v "*#" > "$STEMP"

exec 7<&0
exec < "$TEMP"

read i pl nanmel aliasl
read i p2 name2 alias2

echo "Your local host configuration:" >> "$CONFIG'

echo "$i pl $nanel $aliasl" >> "$CONFI G'
echo "$i p2 $nane2 $alias2" >> "$CONFI G'

exec 0<&7 7<&-

echo -n "Enter conmment or [ENTER] for no comment: "
read comment; echo $coment >> "$CONFI G'

rm " $TEMP"

109

in

Writing interactive scripts

m chel ~/testdir> sysnotes.sh

Qutput will be saved in /var/tnp/sysconfig.out.

Savi ng root account info...

Enter comment or [ENTER] for no comment: hint for password: blue | agoon
Saving hosts information...

Enter commrent or [ENTER] for no comment: in central DNS

m chel ~/testdir> cat /var/tnp/sysconfig. out
Your root account info:

root: x:0:0:root:/root:/bin/bash

hint for password: blue |agoon

Your | ocal host configuration

127.0.0.1 | ocal host . | ocal domai n | ocal host
192.168.42.1 tintagel.kingarthur.comtintage
in central DNS

Closing file descriptors

Since child processes inherit open file descriptors, it is good practice to close afile descriptor when it is
no longer needed. Thisis done using the

exec fd<é&-

syntax. In the above example, file descriptor 7, which has been assigned to standard input, is closed each
time the user needs to have access to the actual standard input device, usually the keyboard.

The following is a simple example redirecting only standard error to a pipe:
m chel ~> cat listdirs.sh
#!/ bi n/ bash

This script prints standard out put unchanged, while standard error is
redirected for processing by awk.

| NPUTDI R=" $1"

fd 6 targets fd 1 target (console out) in current shell
exec 6>&1

fd 1 targets pipe, fd 2 targets fd 1 target (pipe),
fd 1 targets fd 6 target (console out), fd 6 closed, execute |Is
s "$INPUTDIR'/ * 2>&1 >&6 6>& \
Closes fd 6 for awk, but not for Is.
| awk "BEAN { FS=":" } { print "YOU HAVE NO ACCESS TO' $2 }' 6>&

fd 6 closed for current shell
exec 6>&-

Here documents

Frequently, your script might call on another program or script that requires input. The here document
provides away of instructing the shell to read input from the current source until aline containing only

110

Writing interactive scripts

the search string is found (no trailing blanks). All of the lines read up to that point are then used as the
standard input for acommand.

Theresult isthat you don't need to call on separate files; you can use shell-specia characters, and it looks
nicer than a bunch of echo's:

m chel ~> cat startsurf.sh
#!/ bi n/ bash

This script provides an easy way for users to choose between browsers.
echo "These are the web browsers on this system”

Start here docunent
cat << BROWBERS
nmozilla

l'i nks

| ynx

konquer or

opera

net scape

BROWSERS

End here docunent

echo -n "Which is your favorite? "
read browser

echo "Starting $browser, please wait..."
$browser &

m chel ~> startsurf.sh

These are the web browsers on this system
nozilla

l'i nks

| ynx

konquer or

opera

net scape

VWi ch is your favorite? opera

Starting opera, please wait...

Although we talk about a here document, it is supposed to be a construct within the same script. Thisis
an example that installs a package automatically, eventhough you should normally confirm:

#1/ bi n/ bash
This script installs packages automatically, using yum

if [$# -1t 1]; then
echo "Usage: $0 package."
exit 1

fi

111

Writing interactive scripts

yuminstall $1 << CONFIRM

y
CONFI RM

And thisis how the script runs. When prompted with the “Is this ok [y/N]” string, the script answers“y”
automatically:

[root @icon bin]# ./install.sh tuxracer

Gat hering header information file(s) fromserver(s)
Server: Fedora Linux 2 - i386 - core
Server: Fedora Linux 2 - i386 - freshrpns
Server: JPackage 1.5 for Fedora Core 2
Server: JPackage 1.5, generic

Server: Fedora Linux 2 - i386 - updates

Fi ndi ng updat ed packages

Downl oadi ng needed headers

Resol vi ng dependenci es

Dependenci es resol ved

I will do the follow ng:

[install: tuxracer 0.61-26.i 386]

Is this ok [y/N: EnterDownl oadi ng Packages
Runni ng test transaction

Test transaction conpl ete, Success!
tuxracer 100 % done 1/1

Installed: tuxracer 0.61-26.i386
Transaction(s) Conplete

Summary

In this chapter, we learned how to provide user comments and how to prompt for user input. Thisisusually
done using the echo/r ead combination. We also discussed how files can be used asinput and output using
file descriptors and redirection, and how this can be combined with getting input from the user.

We stressed theimportance of providing ample message for the users of our scripts. Asalwayswhen others
use your scripts, it is better to give too much information than not enough. Here documents is a type of
shell construct that allows creation of lists, holding choices for the users. This construct can also be used
to execute otherwise interactive tasks in the background, without intervention.

Exercises

These exercises are practical applications of the constructs discussed in this chapter. When writing the
scripts, you may test by using atest directory that does not contain too much data. Write each step, then
test that portion of code, rather than writing everything at once.

1. Write ascript that asks for the user's age. If it is equal to or higher than 16, print a message saying that
this user is allowed to drink alcohal. If the user's age is below 16, print a message telling the user how
many years he or she has to wait before legally being allowed to drink.

Asan extra, calculate how much beer an 18+ user has drunk statistically (100 liters/year) and print this
information for the user.

2. Write a script that takes one file as an argument. Use a here document that presents the user with a
couple of choices for compressing the file. Possible choices could be gzip, bzip2, compressand zip.

112

Writing interactive scripts

3. Writeascript called honmebackup that automates tar so the person executing the script always uses
the desired options (cvp) and backup destination directory (/ var / backups) to make a backup of
his or her home directory. Implement the following features:

Test for the number of arguments. The script should run without arguments. If any arguments are
present, exit after printing a usage message.

Determine whether the backups directory has enough free space to hold the backup.

Ask the user whether afull or anincremental backup iswanted. If the user does not have afull backup
file yet, print a message that a full backup will be taken. In case of an incremental backup, only do
thisif the full backup is not older than aweek.

Compressthe backup using any compression tool. I nform the user that the script isdoing this, because
it might take sometime, during which the user might start worrying if no output appears on the screen.

Print a message informing the user about the size of the compressed backup.

Seeinfo tar or Introduction to Linux [http:/tille.garrel s.be/training/tldp/c4540.html#sect 09 01 01],
chapter 9: “Preparing your data’ for background information.

4. Write ascript called si npl e- user add. sh that adds alocal user to the system. This script should:

Take only one argument, or else exit after printing a usage message.
Check / et ¢/ passwd and decide on the first free user ID. Print a message containing this ID.

Create a private group for this user, checking the / et ¢/ gr oup file. Print a message containing
the group ID.

Gather information from the operator user: acomment describing thisuser, choicefromalist of shells
(test for acceptability, else exit printing a message), expiration date for this account, extra groups of
which the new user should be a member.

With the obtained information, add alineto/ et ¢/ passwd, / et ¢/ gr oup and/ et ¢/ shadow,
create the user's home directory (with correct permissions!); add the user to the desired secondary
groups.

Set the password for this user to a default known string.

5. Rewrite the script from the section called “ Testing that afile exists’ so that it reads input from the user
instead of taking it from the first argument.

113

http://tille.garrels.be/training/tldp/c4540.html#sect_09_01_01
http://tille.garrels.be/training/tldp/c4540.html#sect_09_01_01

Chapter 9. Repetitive tasks

Upon completion of this chapter, you will be ableto

» Usefor, whileand until loops, and decide which loop fits which occasion.
» Usethebreak and continue Bash built-ins.

» Write scripts using the select statement.

» Write scripts that take a variable number of arguments.

The for loop

How does it work?

Thefor loop isthefirst of the three shell looping constructs. Thisloop alows for specification of alist of
values. A list of commands is executed for each valuein thelist.

The syntax for thisloop is:
for NAME [in LIST]; do COWANDS; done

If [in LIST] is not present, it is replaced with in $@and for executes the COMMANDS once for each
positional parameter that is set (seethe section called “ Specia parameters’ and the section called “ Check-
ing command line arguments”).

Thereturn statusisthe exit status of the last command that executes. If no commands are executed because
LI ST does not expand to any items, the return status is zero.

NANME can be any variable name, althoughi isused very often. L1 ST can be any list of words, strings or
numbers, which can be literal or generated by any command. The COMMANDS to execute can aso be
any operating system commands, script, program or shell statement. Thefirst time through the loop, NAME
isset tothefirstitemin LI ST. The second time, its value is set to the second item in the list, and so on.
Theloop terminates when NAME hastaken on each of thevaluesfrom LI ST and noitemsareleftinL| ST.

Examples

Using command substitution for specifying LIST items

The first is a command line example, demonstrating the use of afor loop that makes a backup copy of
each . xm file. After issuing the command, it is safe to start working on your sources:

[carol @ctarine ~/articles] Is *.xm
filel.xm file2.xm file3.xnl

[carol @ctarine ~/articles] Is *.xm > [|ist
[carol @ctarine ~/articles] for i in “cat list’; docp "$i" "$i".bak ; done

[carol @ctarine ~/articles] Is *.xm*
filel.xm filel.xm .bak file2.xm file2.xm .bak file3.xm file3.xm.bak

Thisoneliststhefilesin/ shi n that are just plain text files, and possibly scripts:

114

Repetitive tasks

for i in “Is /sbin; do file /sbin/$i | grep ASCII; done

Using the content of a variable to specify LIST items

The following is a specific application script for converting HTML files, compliant with a certain scheme,
to PHP files. The conversion is done by taking out the first 25 and the last 21 lines, replacing these with
two PHP tags that provide header and footer lines:

[carol @ctarine ~/htm] cat htm 2php. sh

#!/ bi n/ bash

specific conversion script for ny htm files to php
LIST="$(Is *.htnl)"

for i in "$LIST"; do

NEWNAME=$(ls "$i" | sed -e 's/htnm/php/")

cat beginfile > "$SNEWNAME"

cat "$i" | sed -e '1,25d" | tac | sed -e '1,21d'| tac >> "SNEWNAME'
cat endfile >> "$NEVWNAME"

done

Sincewedon't do aline count here, thereisno way of knowing theline number from which to start deleting
lines until reaching the end. The problem is solved using tac, which reversesthe linesin afile.

The basename command

Instead of using sed toreplacetheht m suffix with php, it would be cleaner to usethe basename
command. Read the man page for moreinfo.

Odd characters
You will run into problemsif the list expands to file names containing spaces and other irregular

characters. A moreidea construct to obtain the list would be to use the shell's globbing feature,
like this:

for i in $PATHNAMVE/ *; do

conmands
done
The while loop
What is it?

The while construct allows for repetitive execution of alist of commands, as long as the command con-
trolling the while loop executes successfully (exit status of zero). The syntax is:

whi | e CONTRCL- COMWVAND; do CONSEQUENT- COMVANDS; done

CONTROL-COMMAND can be any command(s) that can exit with a success or failure status. The
CONSEQUENT-COMMANDS can be any program, script or shell construct.

As soon as the CONTROL-COMMAND fails, the loop exits. In a script, the command following the
done statement is executed.

115

Repetitive tasks

The return status is the exit status of the last CONSEQUENT-COMMANDS command, or zero if none
was executed.

Examples

Simple example using while

Here is an example for the impatient:

#1/ bi n/ bash
This script opens 4 terminal w ndows.
i="0"

while [$i -1t 4]
do

xterm &

done

Nested while loops

The example below was written to copy pictures that are made with a webcam to aweb directory. Every
five minutes a picture is taken. Every hour, a new directory is created, holding the images for that hour.
Every day, anew directory is created containing 24 subdirectories. The script runs in the background.

#!/ bi n/ bash

This script copies files frommny honedirectory into the webserver directory.
(use scp and SSH keys for a renote directory)
A new directory is created every hour.

Pl CSDI R=/ homre/ car ol / pi cs
WEBDI R=/ var / ww/ car ol / webcam

while true; do
DATE="dat e +%r%nPa’
HOUR="dat e +%
nkdi r $VEBDI R/ " $DATE"

while [$HOUR -ne "00"]; do
DESTDI R=$VEEBDI R/ " $DATE" / " $HOUR'
nkdi r "$DESTDI R
nmv $PI CDI R/ *.j pg "$DESTDI R'/
sl eep 3600
HOUR="dat e +%d

done

done

Note the use of the tr ue statement. This means. continue execution until we are forcibly interrupted (with
Kill or Ctrl+C).

116

Repetitive tasks

This small script can be used for simulation testing; it generatesfiles:

#!/ bi n/ bash
This generates a file every 5 ninutes

while true; do

touch pic-"date +% .] pg
sl eep 300

done

Note the use of the date command to generate all kinds of file and directory hames. See the man page
for more.

Usethe system

The previous example is for the sake of demonstration. Regular checks can easily be achieved
using the system's cron facility. Do not forget to redirect output and errors when using scripts
that are executed from your crontab!

Using keyboard input to control the while loop

This script can be interrupted by the user when a Ctrl1+C sequence is entered:

#1/ bi n/ bash
This script provides w sdom
FORTUNE=/ usr/ ganes/f ortune

while true; do
echo "On which topic do you want advi ce?"
cat << topics
politics
startrek

ker nel newbi es
sports

bof h- excuses
magi ¢

| ove
literature
drugs
education

t opi cs

echo
echo -n "Make your choice: "
read topic

echo

echo "Free advice on the topic of $topic: "
echo

$FORTUNE $t opi ¢

echo

117

Repetitive tasks

done

A here document is used to present the user with possible choices. And again, the true test repeats the
commands from the CONSEQUENT-COMMANDS list over and over again.

Calculating an average

This script cal culates the average of user input, which istested beforeit is processed: if input is not within
range, amessage is printed. If g is pressed, the loop exits:

#1/ bi n/ bash

Cal cul ate the average of a series of nunbers.

SCORE=" 0"

AVERAGE=" 0"

SUME" 0"

NUME" 0"

while true; do

echo -n "Enter your score [0-100% ('q" for quit): "; read SCORE;
if (("$SCORE" < "0")) || (("$SCORE" > "100")); then
echo "Be serious. Comon, try again: "
elif ["$SCORE" == "qg"]; then
echo "Average rating: $AVERAGE% "
br eak
el se

SUMES[$SUM + $SCORE]

NUMES[SNUM + 1]

AVERAGE=$[$SUM / $NUM
fi

done
echo "Exiting."

Note how the variables in the last lines are left unquoted in order to do arithmetic.

The until loop
What is it?

Theuntil loopisvery similar to thewhileloop, except that theloop executesuntil the TEST-COMMAND
executes successfully. As long as this command fails, the loop continues. The syntax is the same as for
the while loop:

until TEST- COMVAND; do CONSEQUENT- COMWANDS; done

The return status is the exit status of the last command executed in the CONSEQUENT-COMMANDS
list, or zero if none was executed. TEST-COMMAND can, again, be any command that can exit with

118

Repetitive tasks

a success or failure status, and CONSEQUENT-COMMANDS can be any UNIX command, script or
shell construct.

Aswe aready explained previoudly, the “;” may be replaced with one or more newlines wherever it ap-
pears.

Example

An improved pi ct uresort. sh script (see the section called “Nested while loops”), which tests for
available disk space. If not enough disk space is available, remove pictures from the previous months:

#!/ bi n/ bash

This script copies files frommny honedirectory into the webserver directory.
A new directory is created every hour.
If the pics are taking up too nmuch space, the ol dest are renpved.

while true; do
Dl SKFUL=$(df -h $WEBDIR | grep -v File | awk '{print $5 }' | cut -d "% -f1 -)

until [$DI SKFUL -ge "90"]; do

DATE="dat e +%r%a"
HOUR="dat e +%{
nkdi r $VEBDI R/ " $DATE"

while [$HOUR -ne "00"]; do
DESTDI R=$WEBDI R/ " $DATE"/ " $HOUR"
nkdi r " $DESTDI R
mv $PICDI R/ *.jpg "$DESTDI R"/
sl eep 3600
HOUR="dat e +%+
done

Dl SKFULL=$(df -h $WEBDIR | grep -v File | awk '{ print $5 }' | cut -d "% -f1 -)
done

TOREMOVE=$(find $WEBDIR -type d -a -ntinme +30)
for i in $TOREMOVE, do

rm-rf "$i";

done

done

Note the initialization of the HOUR and DI SKFULL variables and the use of options with Is and date in
order to obtain a correct listing for TOREMOVE.

I/O redirection and loops

Input redirection

Instead of controlling aloop by testing the result of a command or by user input, you can specify afile
from which to read input that controls the loop. In such cases, read is often the controlling command. As

119

Repetitive tasks

long as input lines are fed into the loop, execution of the loop commands continues. As soon as al the
input lines are read the loop exits.

Since the loop construct is considered to be one command structure (such aswhile TEST-COMMAND;
do CONSEQUENT-COMMANDS; done), the redirection should occur after the done statement, so that
it complies with the form

command < file

Thiskind of redirection also works with other kinds of loops.

Output redirection

In the example below, output of the find command is used as input for the read command controlling
awhile loop:

[carol @ctarine ~/testdir] cat archiveol dstuff.sh
#1/ bi n/ bash

This script creates a subdirectory in the current directory, to which old
files are noved.

M ght be sonething for cron (if slightly adapted) to execute weekly or

mont hly.

ARCHI VENR="dat e +%r%rdel’
DESTDI R="$PWD ar chi ve- $ARCHI VENR"

mkdi r "$DESTDI R’

using quotes to catch file names containing spaces, using read -d for nore
fool - proof usage:

find "$PWD' -type f -a -ntime +5 | while read -d $'\000' file

do

gzip "$file"; nmv "$file".gz "$DESTD R’

echo "$file archived"

done

Files are compressed before they are moved into the archive directory.

Break and continue
The break built-in

The break statement is used to exit the current loop before its normal ending. Thisis done when you don't
know in advance how many times the loop will have to execute, for instance because it is dependent on
user input.

The example below demonstrates awhile loop that can be interrupted. Thisisadlightly improved version
of thewi sdom sh script from the section called “ Using keyboard input to control the while loop”.

#! / bi n/ bash

120

Repetitive tasks

This script provides w sdom
You can now exit in a decent way.

FORTUNE=/ usr/ ganes/f ortune

while true; do

echo "On which topic do you want advi ce?"
echo "1. politics”

echo "2. startrek"

echo "3. Kkernel newbi es”

echo "4. sports”

echo "5. bof h-excuses"

echo "6. magic"

echo "7. |ove"

echo "8. literature”

echo "9. drugs”

echo "10. education”

echo

echo -n "Enter your choice, or O for exit: "
read choice

echo

case $choice in
1)
$FORTUNE politics
2)
$FORTUNE startrek
3)
$FORTUNE ker nel newbi es
4)
echo "Sports are a waste of tine, energy and noney."
echo "Go back to your keyboard.™
echo -e "\t\t\t\t -- \"Unhealthy is ny mddl e name\" Soggie."
5)
$FORTUNE bof h- excuses
6)
$FORTUNE nmgi ¢
7)
$FORTUNE | ove
8)
$FORTUNE literature
9)
$FORTUNE dr ugs

121

Repetitive tasks

10)
$FORTUNE educati on

0)

echo "OK, see you!™"

br eak

3

echo "That is not a valid choice, try a nunber fromO to 10."

esac
done

Mind that break exits the loop, not the script. This can be demonstrated by adding an echo command at
the end of the script. This echo will also be executed upon input that causes break to be executed (when
the user types“0").

In nested loops, break allows for specification of which loop to exit. See the Bash info pages for more.

The continue built-in

The continue statement resumes iteration of an enclosing for, while, until or select loop.

When used in afor loop, the controlling variable takes on the value of the next element in the list. When
used in awhile or until construct, on the other hand, execution resumes with TEST-COMMAND at the
top of the loop.

Examples

In the following example, file names are converted to lower case. If no conversion needs to be done, a
continue statement restarts execution of the loop. These commands don't eat much system resources, and
most likely, similar problems can be solved using sed and awk. However, it is useful to know about this
kind of construction when executing heavy jobs, that might not even be necessary when tests are inserted
at the correct locations in a script, sparing system resources.

[carol @ctarine ~/test] cat tol ower.sh
#1/ bi n/ bash

This script converts all file nanes containing upper case characters into file#
LI ST="%(Is)"

for name in "$LIST"; do

if [["$name" !'= *[[:upper:]]1*]1]; then

conti nue

f

ORI G="$nane"
NEW:" echo $nane | tr "A-Z 'a-z'"

mv "$ORI G' " $SNEW
echo "new nanme for $ORIG is $NEW

122

Repetitive tasks

done

This script has at least one disadvantage: it overwrites existing files. The nocl obber optionto Bash is
only useful when redirection occurs. The - b option to the mv command provides more security, but is
only safe in case of one accidental overwrite, asis demonstrated in thistest:

[carol @ctarine ~/test] rm*
[carol @ctarine ~/test] touch test Test TEST

[carol @ctarine ~/test] bash -x tol ower.sh
++ |'s

+ LI ST=t est

Test

TEST

+ [[test !'= *[[:upper:]]*]]

+ conti nue

+ [[Test !'= *[[:upper:]]*]]

+ ORI G=Test

++ echo Test

++ tr A-Z a-z

+ NEWEt est

+ nv -b Test test

+ echo 'new nane for Test is test'’
new nane for Test is test

+ [[TEST !'= *[[:upper:]]*]]

+ ORI G=TEST

++ echo TEST

++ tr A-Z a-z

+ NEWEt est

+ nv -b TEST test

+ echo '"new nane for TEST is test'
new nane for TEST is test

[carol @ctarine ~/test] Is -a
..l test test~

Thetr is part of the textutils package; it can perform all kinds of character transformations.

Making menus with the select built-in

General

Use of select
The select construct allows easy menu generation. The syntax is quite similar to that of the for loop:
select WORD [in LIST]; do RESPECTI VE- COWANDS; done

LI ST is expanded, generating a list of items. The expansion is printed to standard error; each item is
preceded by anumber. If in LI ST is not present, the positional parameters are printed, asif in $@would
have been specified. LI ST isonly printed once.

123

Repetitive tasks

Upon printing all the items, the PS3 prompt is printed and one line from standard input is read. If this
line consists of a number corresponding to one of the items, the value of WORD is set to the name of that
item. If the line is empty, the items and the PS3 prompt are displayed again. If an EOF (End Of File)
character isread, the loop exits. Since most users don't have a clue which key combination is used for the
EOF sequence, it is more user-friendly to have abreak command as one of the items. Any other value of
the read line will set WORD to be anull string.

Theread lineis saved in the REPLY variable.

The RESPECTIVE-COMMANDS are executed after each selection until the number representing the
break isread. This exits the loop.

Examples

Thisisavery simple example, but as you can seg, it is not very user-friendly:

[carol @ctarine testdir] cat private.sh
#!/ bi n/ bash

echo "This script can nake any of the files in this directory private."
echo "Enter the nunber of the file you want to protect:"

sel ect FILENAME in *;

do
echo "You picked $FI LENAME ($REPLY), it is now only accessible to you."
chnod go-rwx " $FI LENAMVE"

done

[carol @ctarine testdir] ./private.sh

This script can make any of the files in this directory private.
Enter the nunber of the file you want to protect:

1) archive-20030129

2) bash

3) private.sh

#? 1

You pi cked archive-20030129 (1)

#?

Setting the PS3 prompt and adding a possibility to quit makesit better:

#!/ bi n/ bash

echo "This script can nake any of the files in this directory private."
echo "Enter the nunber of the file you want to protect:"

PS3="Your choice: "
QU T="QUIT THIS PROGRAM - | feel safe now."
touch "$QU T"

sel ect FILENAME in *;
do
case $FI LENAME in

"$QUIT)

124

Repetitive tasks

echo "Exiting."
br eak
*) v
echo "You picked $FI LENAVE ($REPLY)"
chnod go-rwx " $FI LENAMVE"

esac
done
rm"s$QU T

Submenus

Any statement within aselect construct can be another select loop, enabling (a) submenu(s) within amenu.

By default, the PS3 variable is not changed when entering a nested select loop. If you want a different
prompt in the submenu, be sureto set it at the appropriate time(s).

The shift built-in
What does it do?

The shift command is one of the Bourne shell built-ins that comes with Bash. This command takes one
argument, a number. The positional parameters are shifted to the left by this number, N. The positional
parameters from N+1 to $# are renamed to variable namesfrom $1 to $# - N+1.

Say you have acommand that takes 10 arguments, and N is 4, then $4 becomes $1, $5 becomes $2 and
so on. $10 becomes $7 and the original $1, $2 and $3 are thrown away.

If N iszero or greater than $#, the positional parameters are not changed (the total number of arguments,
see the section called “ Checking command line arguments”’) and the command has no effect. If N is not
present, it is assumed to be 1. The return status is zero unless N is greater than $# or less than zero;
otherwise it is non-zero.

Examples

A shift statement istypically used when the number of arguments to acommand is not known in advance,
for instance when users can give as many arguments as they like. In such cases, the arguments are usually
processed in a while loop with atest condition of (($#)). This condition is true as long as the number
of arguments is greater than zero. The $1 variable and the shift statement process each argument. The
number of arguments is reduced each time shift is executed and eventually becomes zero, upon which
the while loop exits.

Theexamplebelow, cl eanup. sh, usesshift statementsto process each filein thelist generated by find:

#1/ bi n/ bash
This script can clean up files that were | ast accessed over 365 days ago.

USAGE="Usage: $0 dirl1 dir2 dir3 ... dirN

125

Repetitive tasks

if ["$#" == "0"]; then
echo " $USAGE"

exit 1

fi

while (("$#")); do

if [[$(Is "$1") ==""]1]; then
echo "Enpty directory, nothing to be done."
el se

find "$1" -type f -a -atine +365 -exec rm-i {} \;
f

shift

done

-€XeC VS. Xargs
The above find command can be replaced with the following:
find options | xargs [conmands_to_execute_on_found_fil es]

The xar gs command builds and executes command lines from standard input. This has the ad-
vantage that the command line isfilled until the system limit is reached. Only then will the com-
mand to execute be called, in the above example thiswould be rm. If there are more arguments,
anew command line will be used, until that oneisfull or until there are no more arguments. The
samething using find - exec callson the command to execute on the found filesevery timeafile
isfound. Thus, using xar gs greatly speeds up your scripts and the performance of your machine.

In the next example, we modified the script from the section called “Here documents’ so that it accepts
multiple packagesto install at once:

#!/ bi n/ bash

if [$# -1t 1]; then
echo "Usage: $0 package(s)"
exit 1

f

while (($#)); do

yuminstall "$1" << CONFI RM

y

CONFI RM

shi ft

done

Summary

In this chapter, we discussed how repetitive commands can be incorporated in loop constructs. Most com-
mon loops are built using the for, while or until statements, or acombination of these commands. The for
loop executes atask a defined number of times. If you don't know how many times a command should
execute, use either until or while to specify when the loop should end.

Loops can be interrupted or reiterated using the break and continue statements.

126

Repetitive tasks

A file can be used as input for aloop using the input redirection operator, loops can aso read output from
commands that is fed into the loop using a pipe.

The select construct is used for printing menus in interactive scripts. Looping through the command line
arguments to a script can be done using the shift statement.

Exercises

Remember: when building scripts, work in steps and test each step before incorporating it in your script.

1

Create ascript that will take a(recursive) copy of filesin/ et ¢ so that abeginning system administrator
can edit files without fear.

. Write a script that takes exactly one argument, a directory name. If the number of arguments is more

or less than one, print a usage message. If the argument is not a directory, print another message. For
the given directory, print the five biggest files and the five files that were most recently modified.

. Can you explain why it is so important to put the variables in between double quotes in the example

from the section called “Output redirection”?

. Write ascript similar to the onein the section called “ The break built-in”, but think of away of quitting

after the user has executed 3 loops.

. Think of a better solution than move - b for the script from the section called “Examples’ to prevent

overwriting of existing files. For instance, test whether or not afile exists. Don't do unnecessary work!

. Rewrite thewhi chdaenon. sh script from the section called “Boolean operations’, so that it:

* Printsalist of serversto check, such as Apache, the SSH server, the NTP daemon, a name daemon,
a power management daemon, and so on.

* For each choice the user can make, print some sensibleinformation, like the name of the web server,
NTP trace information, and so on.

» Optionally, build in apossibility for usersto check other serversthan the oneslisted. For such cases,
check that at least the given processis running.

* Review the script from the section called “ Calculating an average”. Note how character input other
than q is processed. Rebuild this script so that it prints a message if characters are given asinput.

127

Chapter 10. More on variables

In this chapter, we will discuss the advanced use of variables and arguments. Upon completion, you will be able to:
» Declare and use an array of variables

 Specify the sort of variable you want to use

* Make variables read-only

e Useset toassign avalueto avariable

Types of variables

General assignment of values

Aswealready saw, Bash understands many different kinds of variables or parameters. Thusfar, we haven't
bothered much with what kind of variables we assigned, so our variables could hold any value that we
assigned to them. A simple command line example demonstrates this:

[bob in ~] VAR ABLE=12

[bob in ~] echo $VARI ABLE
12

[bob in ~] VARI ABLE=string

[bob in ~] echo $VARI ABLE
string

There are cases when you want to avoid this kind of behavior, for instance when handling telephone and
other numbers. Apart from integersand variabl es, you may also want to specify avariablethat isaconstant.
Thisis often done at the beginning of a script, when the value of the constant is declared. After that, there
are only references to the constant variable name, so that when the constant needs to be changed, it only
hasto be done once. A variable may also be a series of variables of any type, aso-called array of variables
(VAROVARL, VAR, ... VARN).

Using the declare built-in
Using a declar e statement, we can limit the value assignment to variables.
The syntax for declar e is the following:
decl are OPTION(s) VARI ABLE=val ue

Thefollowing options are used to determine the type of datathe variable can hold and to assign it attributes:

Table 10.1. Optionsto the declar e built-in

Option M eaning
-a Variableisan array.
-f Use function names only.

128

More on variables

Option M eaning

- The variableisto be treated as an integer; arith-
metic evaluation is performed when the variable
isassigned avalue (see the section called “ Arith-
metic expansion”).

-p Display the attributes and values of each variable.
When - p is used, additional options are ignored.

-r Make variables read-only. These variables cannot
then be assigned values by subsequent assignment
statements, nor can they be unset.

-t Give each variable the trace attribute.

- X Mark each variable for export to subsequent com-
mands via the environment.

Using +instead of - turnsoff the attributeinstead. When used in afunction, declar e creates|ocal variables.

The following example shows how assignment of atype to a variable influences the value.

[bob in ~] declare -i VARI ABLE=12
[bob in ~] VARI ABLE=string

[bob in ~] echo $VARI ABLE
0

[bob in ~] declare -p VARI ABLE
declare -i VARI ABLE="0"

Note that Bash has an option to declare a numeric value, but none for declaring string values. This is
because, by default, if no specifications are given, a variable can hold any type of data:

[bob in ~] OTHERVAR=bI ah

[bob in ~] declare -p OTHERVAR
decl are -- OTHERVAR="bl ah"

As soon as you restrict assignment of values to a variable, it can only hold that type of data. Possible
restrictions are either integer, constant or array.

See the Bash info pages for information on return status.

Constants

In Bash, constants are created by making avariable read-only. The readonly built-in marks each specified
variable as unchangeable. The syntax is:

readonly OPTI ON VARI ABLE(s)

The values of these variables can then no longer be changed by subsequent assignment. If the- f optionis
given, each variable refers to a shell function; see Chapter 11, Functions. If - a is specified, each variable
referstoan array of variables. If no argumentsaregiven, or if - p issupplied, alist of all read-only variables
isdisplayed. Using the - p option, the output can be reused as input.

129

More on variables

Thereturn status is zero, unless an invalid option was specified, one of the variables or functions does not
exist, or - f was supplied for avariable name instead of for afunction name.

[bob in ~] readonly TUX=pengui npower

[bob in ~] TUX=M ckeysoft
bash: TUX: readonly variable

Array variables

Creating arrays

An array is a variable containing multiple values. Any variable may be used as an array. There is no
maximum limit to the size of an array, nor any requirement that member variables be indexed or assigned
contiguously. Arrays are zero-based: the first element is indexed with the number 0.

Indirect declaration is done using the following syntax to declare a variable:

ARRAY[| NDEXNR] =val ue

The INDEXNR istreated as an arithmetic expression that must evaluate to a positive number.
Explicit declaration of an array is done using the declar e built-in:

decl are -a ARRAYNAME

A declaration with anindex number will also be accepted, but theindex number will beignored. Attributes
to the array may be specified using the declare and readonly built-ins. Attributes apply to all variables
in the array; you can't have mixed arrays.

Array variables may also be created using compound assignments in this format:
ARRAY=(val uel value2 ... val ueN

Each value is then in the form of [indexnumber=]string. The index number is optional. If it is supplied,
that index is assigned to it; otherwise the index of the element assigned is the number of the last index
that was assigned, plus one. Thisformat is accepted by declare aswell. If no index numbers are supplied,
indexing starts at zero.

Adding missing or extramembersin an array is done using the syntax:
ARRAYNAME[i ndexnunber] =val ue

Remember that the read built-in provides the - a option, which allows for reading and assigning values
for member variables of an array.

Dereferencing the variables in an array
In order to refer to the content of an item in an array, use curly braces. Thisis necessary, as you can see

from the following example, to bypass the shell interpretation of expansion operators. If theindex number
is@ or *, all members of an array are referenced.

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${ARRAY[*]}

130

More on variables

one two three

[bob in ~] echo $ARRAY[*]
one[*]

[bob in ~] echo ${ARRAY[2]}
t hree

[bob in ~] ARRAY[3] =four

[bob in ~] echo ${ARRAY[*]}
one two three four

Referring to the content of a member variable of an array without providing an index number is the same
as referring to the content of the first element, the one referenced with index number zero.

Deleting array variables

The unset built-in is used to destroy arrays or member variables of an array:

[bob in ~] unset ARRAY[1]

[bob in ~] echo ${ARRAY[*]}
one three four

[bob in ~] unset ARRAY

[bob in ~] echo ${ARRAY[*]}
<--no output-->

Examples of arrays

Practical examples of the usage of arrays are hard to find. Y ou will find plenty of scripts that don't really
do anything on your system but that do use arrays to cal culate mathematical series, for instance. And that
would be one of the more interesting examples...most scripts just show what you can do with an array in
an oversimplified and theoretical way.

The reason for this dullness is that arrays are rather complex structures. Y ou will find that most practical
examples for which arrays could be used are aready implemented on your system using arrays, however
on a lower level, in the C programming language in which most UNIX commands are written. A good
exampleisthe Bash history built-in command. Those readerswho areinterested might check thebui | t -
i ns directory in the Bash source tree and take alook at f ¢. def , which is processed when compiling
the built-ins.

Another reason good examples are hard to find is that not all shells support arrays, so they break compat-
ibility.

After long days of searching, | finally found this example operating at an Internet provider. It distributes
Apache web server configuration files onto hostsin aweb farm:

#!/ bi n/ bash

if [$(whoami) != "root']; then

131

More on variables

echo "Mist be root to run $0"
exit 1;
fi
if [-z $1]; then
echo "Usage: $0 </path/to/httpd. conf>"
exit 1
fi

htt pd_conf _new=$1
htt pd_conf _pat h="/usr/ | ocal / apache/ conf™"
| ogi n=ht user

farm host s=(web03 web04 web05 web06 web07)

for i in ${farmhosts[@}; do
su $login -c "scp $httpd_conf_new ${i}: ${httpd_conf_path}"
su $login -c "ssh $i sudo /usr/local/apache/ bin/apachect!l graceful"

done
exit O

First two tests are performed to check whether the correct user is running the script with the correct argu-
ments. The names of the hosts that need to be configured are listed in the array f ar m_host s. Then all
these hosts are provided with the Apache configuration file, after which the daemon is restarted. Note the
use of commands from the Secure Shell suite, encrypting the connections to remote hosts.

Thanks, Eugene and colleague, for this contribution.
Dan Richter contributed the following example. Thisis the problem he was confronted with:

“...In my company, we have demos on our web site, and every week someone hasto test all of them. So|
have a cron job that fills an array with the possible candidates, uses date +%Mo find the week of the year,
and does a modulo operation to find the correct index. The lucky person gets notified by e-mail.”

And thiswas hisway of solving it:

#1/ bi n/ bash
This is get-tester-address.sh
#

First, we test whether bash supports arrays.

(Support for arrays was only added recently.)

#

whotest[0] ="test' || (echo 'Failure: arrays not supported in this version of
bash.' && exit 2)

#
Qur list of candidates. (Feel free to add or
renove candi dates.)
#
whol i st =(
'Bob Smith <bob@xanpl e. conp'
"Jane L. WIIlianms <jane@xanple.conp'
"Eric S. Raynond <esr @xanpl e. conp’
"Larry Vall <wal | @xanpl e. conp'

132

More on variables

' Li nus Torval ds <l inus@xanpl e. conp’

)
#
Count the nunmber of possible testers.
(Loop until we find an enpty string.)

#
count =0
while ["x${wholist[count]}" = "x"]
do
count =$(($count + 1))
done
#
Now we cal cul ate whose turn it is.
#
week="date '+ " # The week of the year (0..53).
week=%{ week#0} # Renpve possi bl e | eading zero
let "index = $week % $count” # week modul o count = the |ucky person
emai | =${ whol i st [i ndex]} # Get the lucky person's e-nmmil address.
echo $enui | # Qutput the person's e-nmil address.

This script isthen used in other scripts, such as this one, which uses a here document:

emai | =" get -t est er -addr ess. sh’ # Find who to e-mmil.
host name="host nane’ # This machi ne' s nane.

#

Send e-mail to the right person.

#

mai | $enmil -s '[Denp Testing]' <<EOF
The lucky tester this week is: $emil

Renmi nder: the |list of denpbs is here:
http://web. exanpl e. com 8080/ DenpSi t es

(This e-mail was generated by $0 on ${hostnane}.)
ECF

Operations on variables

Arithmetic on variables

We discussed this already in the section called “ Arithmetic expansion”.

Length of a variable

Using the ${#VAR} syntax will calculate the number of charactersin avariable. If VARis“*” or “@", this
valueis substituted with the number of positional parameters or number of elementsin an array in general.
Thisis demonstrated in the example below:

133

More on variables

[bob in ~] echo $SHELL
/ bi n/ bash

[bob in ~] echo ${#SHELL}
9

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${#ARRAY}
3

Transformations of variables

Substitution

${ VAR - VORD}

If VAR s not defined or null, the expansion of WORD is substituted; otherwise the value of VAR is substi-
tuted:

[bob in ~] echo ${TEST:-test}

t est

[bob in ~] echo $TEST

[bob in ~] export TEST=a_string

[bob in ~] echo ${TEST:-test}

a_string

[bob in ~] echo ${TEST2: - $TEST}
a_string

Thisform is often used in conditional tests, for instance in this one:

[-z "${COLUWNS: -}"] && COLUWNS=80
It is ashorter notation for
if [-z "${COLUWNS: -}"]; then
COLUWNS=80
fi
See the section called “ String comparisons’ for more information about this type of condition testing.

If thehyphen (-) isreplaced with the equal sign (=), thevalueisassigned to the parameter if it does not exist:

[bob in ~] echo $TEST2

134

More on variables

[bob in ~] echo ${TEST2: =$TEST}
a_string

[bob in ~] echo $TEST2
a_string

The following syntax tests the existence of avariable. If it is not set, the expansion of WORD is printed to
standard out and non-interactive shells quit. A demonstration:

[bob in ~] cat vartest.sh
#!/ bi n/ bash

This script tests whether a variable is set. |If not,
it exits printing a nessage.

echo ${TESTVAR ?"There's so much | still wanted to do..."}
echo "TESTVAR is set, we can proceed."

[bob in testdir] ./vartest.sh
./vartest.sh: line 6: TESTVAR There's so nmuch | still wanted to do...

[bob in testdir] export TESTVAR=present

[bob in testdir] ./vartest.sh
pr esent
TESTVAR i s set, we can proceed.

Using “+" instead of the exclamation mark sets the variable to the expansion of WORD; if it does not exist,
nothing happens.

Removing substrings
To strip a number of characters, equal to OFFSET, from a variable, use this syntax:
${ VAR OFFSET: LENGTH}

The LENGTH parameter defines how many characters to keep, starting from the first character after the
offset point. If LENGTH is omitted, the remainder of the variable content is taken:

[bob in ~] export STRING="thi sisaveryl onghange"

[bob in ~] echo ${STRI NG 4}
i saveryl ongnane

[bob in ~] echo ${STRI NG 6: 5}
avery

${ VAR#WORD}
and

${ VAR #\WORD}

135

More on variables

These constructs are used for deleting the pattern matching the expansion of WORD in VAR. WORD is
expanded to produce a pattern just as in file name expansion. If the pattern matches the beginning of the
expanded value of VAR, then the result of the expansion is the expanded value of VAR with the shortest
matching pattern (“#”) or the longest matching pattern (indicated with “##").

If VAR is* or @ the pattern removal operation is applied to each positional parameter in turn, and the
expansion is the resultant list.

If VAR is an array variable subscribed with “*” or “@", the pattern removal operation is applied to each
member of the array in turn, and the expansion is the resultant list. Thisis shown in the examples below:

[bob in ~] echo ${ARRAY[*]}
one two one three one four

[bob in ~] echo ${ARRAY[*] #one}
two three four

[bob in ~] echo ${ARRAY[*]#t}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]#t*}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]##t*}
one one one four

The opposite effect is obtained using “%” and “%%", as in this example below. WORD should match a
trailing portion of string:
[bob in ~] echo $STRI NG

t hi si saveryl ongnane

[bob in ~] echo ${STRI NGmane}
t hi si saveryl ong

Replacing parts of variable names
Thisis done using the
${ VAR/ PATTERN STRI NG
or
${ VAR/ | PATTERN STRI NG}
syntax. The first form replaces only the first match, the second replaces all matches of PATTERN with
STRI NG
[bob in ~] echo ${STRI NG nane/stri ng}
t hi si saveryl ongstring

More information can be found in the Bash info pages.

136

More on variables

Summary

Normally, avariable can hold any type of data, unless variables are declared explicitly. Constant variables
are set using the readonly built-in command.

An array holds a set of variables. If atype of data is declared, then all elements in the array will be set
to hold only this type of data.

Bash features allow for substitution and transformation of variables “on the fly”. Standard operationsin-
clude calculating the length of a variable, arithmetic on variables, substituting variable content and sub-
stituting part of the content.

Exercises

Here are some brain crackers:
1. Write ascript that does the following:
 Display the name of the script being executed.
» Display thefirst, third and tenth argument given to the script.
 Display the total number of arguments passed to the script.
« If therewere morethan three positional parameters, use shift to moveall thevalues 3 placesto theleft.
* Print all the values of the remaining arguments.
* Print the number of arguments.
Test with zero, one, three and over ten arguments.

2. Write a script that implements a simple web browser (in text mode), using wget and links - dunp to
display HTML pagesto the user. The user has 3 choices: enter a URL, enter b for back and q to quit.
The last 10 URLSs entered by the user are stored in an array, from which the user can restore the URL
by using the back functionality.

137

Chapter 11. Functions

In this chapter, we will discuss

* What functions are

Creation and displaying of functions from the command line
Functionsin scripts
Passing arguments to functions

When to use functions

Introduction

What are functions?

Shell functions are away to group commands for later execution, using a single name for this group, or
routine. The name of the routine must be unique within the shell or script. All the commands that make up
afunction are executed like regular commands. When calling on a function as a simple command name,
the list of commands associated with that function name is executed. A function is executed within the
shell in which it has been declared: no new process is created to interpret the commands.

Specia built-in commands are found before shell functions during command lookup. The specia built-ins
are: break, :, ., continue, eval, exec, exit, export, readonly, return, set, shift, trap and unset.

Function syntax

Functions either use the syntax

function FUNCTION { COWANDS; }
or

FUNCTION () { COWMANDS; }

Both define ashell function FUNCTION. The use of the built-in command function is optional; however,
if it isnot used, parentheses are needed.

The commands listed between curly braces make up the body of the function. These commands are exe-
cuted whenever FUNCTION is specified as the name of a command. The exit status is the exit status of
the last command executed in the body.

Common mistakes

The curly braces must be separated from the body by spaces, otherwise they are interpreted in
the wrong way.

The body of afunction should end in a semicolon or a newline.

Positional parameters in functions

Functions are like mini-scripts: they can accept parameters, they can use variables only known within the
function (using the local shell built-in) and they can return values to the calling shell.

138

Functions

A function also has a system for interpreting positional parameters. However, the positional parameters
passed to afunction are not the same as the ones passed to a command or script.

When a function is executed, the arguments to the function become the positional parameters during its
execution. The special parameter # that expands to the number of positional parameters is updated to
reflect the change. Positional parameter O is unchanged. The Bash variable FUNCNAME is set to the name
of the function, while it is executing.

If thereturn built-inisexecuted in afunction, the function compl etes and execution resumes with the next
command after the function call. When a function completes, the values of the positional parameters and
the special parameter # are restored to the values they had prior to the function's execution. If a numeric
argument is given to return, that statusisreturned. A simple example:

[lydi a@ointreau ~/test] cat showparans. sh
#1/ bi n/ bash

echo "This script denonstrates function arguments.”
echo

echo "Positional paranmeter 1 for the script is $1."
echo

test ()
{

echo "Positional parameter 1 in the functionis $1."
RETURN_VALUE=$7?

echo "The exit code of this function is $RETURN VALUE. "
}

test other_param

[lydi a@ointreau ~/test] ./showparans.sh paraneterl
This script denonstrates function argunents.

Positional paraneter 1 for the script is paraneterl.

Positional paraneter 1 in the function is other_param
The exit code of this function is O.

[lydi a@ointreau ~/test]
Note that the return value or exit code of the function is often storen in avariable, so that it can be probed

at alater point. The init scripts on your system often use the technique of probing the RETVAL variable
in aconditional test, like this one:

if [$RETVAL -eq 0]; then
<start the daenpn>

Or like thisexamplefromthe/ et ¢/ i ni t . d/ and script, where Bash's optimization features are used:

[SRETVAL = 0] && touch /var/l ock/subsys/and

139

Functions

Thecommandsafter & & areonly executed when thetest provesto betrue; thisisashorter way to represent
anif/then/fi structure.

The return code of the function is often used as exit code of the entire script. You'll see alot of initscripts
ending in something like exit $RETVAL.

Displaying functions
All functions known by the current shell can be displayed using the set built-in without options. Functions

areretained after they are used, unless they are unset after use. The which command also displays func-
tions:

[lydia@ointreau ~] which zless
zless is a function

zl ess ()
{
zcat "$@ | "$PACER
}
[l ydia@oi ntreau ~] echo $PAGER
| ess

Thisisthe sort of function that istypically configured in the user's shell resource configuration files. Func-
tions are more flexible than aliases and provide a simple and easy way of adapting the user environment.

Here's one for DOS users:

dir ()
{

Is -F --color=zauto -IF --color=always "$@ | less -r
}

Examples of functions in scripts
Recycling

There are plenty of scripts on your system that use functions as a structured way of handling series of
commands. On some Linux systems, for instance, youwill findthe/ et c/rc. d/init. d/ functions
definition file, which is sourced in all init scripts. Using this method, common tasks such as checking if
a process runs, starting or stopping a daemon and so on, only have to be written once, in a general way.
If the same task is needed again, the code is recycled.

Y ou could make your own / et ¢/ f unct i ons file that contains al functions that you use regularly on
your system, in different scripts. Just put the line

/etc/ functions

somewhere at the start of the script and you can recycle functions.

Setting the path

This section might be found inyour / et c/ pr of i | e file. The function pathmunge is defined and then
used to set the path for the root and other users:

140

Functions

pat hmunge () {
if ! echo $PATH | /bin/egrep -q "(*]:)$1($|:)" ; then

if ["$2" = "after"] ; then
PATH=$PATH: $1
el se

PATH=$1: $PATH
fi
fi
}

Path mani pul ati on
if [7id-u =017]; then

pat hrmunge /sbin

pat hrmunge /usr/sbin

pat hmunge /usr/| ocal /sbin
fi

pat hmunge /usr/ X11R6/bin after

unset pat hnunge

The function takes its first argument to be a path name. If this path name is not yet in the current path,
it is added. The second argument to the function defines if the path will be added in front or after the
current PATH definition.

Normal usersonly get / usr/ X11R6/ bi n added to their paths, while root gets a couple of extra direc-
tories containing system commands. After being used, the function is unset so that it is not retained.

Remote backups

The following example is one that | use for making backups of the files for my books. It uses SSH keys
for enabling the remote connection. Two functions are defined, buplinux and bupbash, that each make a
. t ar file, which isthen compressed and sent to aremote server. After that, the local copy is cleaned up.

On Sunday, only bupbash is executed.

#/ bi n/ bash

LOGFI LE="/ net hone/ti | | e/l og/ backupscri pt.| og"
echo "Starting backups for “date " >> "$LOGFI LE"

bupl i nux()

{

DI R="/nethome/tille/xm/db/linux-basics/"
TAR="Li nux.tar"

BZI P="$TAR. bz2"

SERVER="ri ncew nd"

RDI R="/var/www/ intra/tille/htm /training/"

cd "$DI R
tar cf "$TAR' src/*.xm src/inages/*.png src/imges/*.eps
echo "Conpressing $TAR .." >> "$LOGHI LE"

141

Functions

bzi p2 "$TAR'

echo "...done." >> "$LOGFI LE"

echo "Copying to $SERVER .." >> "$LOGFI LE"
scp "$BZI P' "$SERVER $RDIR' > /dev/null 2>&1
echo "...done." >> "$LOGFI LE"

echo -e "Done backing up Linux course:\nSource files, PNG and EPS i mages.\ nRubbi sh
rm " $BZI P

}

bupbash()

{

DI R="/nethome/till e/ xm /db/"
TAR="Bash.tar"

Bzl P="$TAR bz2"

FI LES="bash- pr ogr anm ng/ "

SERVER="ri ncewi nd"

RDI R="/var/www/ intra/tille/htm /training/"

cd "$DI R

tar cf "$TAR' "$FI LES"

echo "Conpressing $TAR .." >> "$LOGHI LE"
bzi p2 "$TAR'

echo "...done." >> "$LOGFI LE"

echo "Copying to $SERVER .." >> "$LOGFI LE"
scp "$BZI P' "$SERVER $RDIR' > /dev/null 2>&1
echo "...done." >> "$LOGFI LE"

echo -e "Done backi ng up Bash course:\ n$Fl LES\ nRubbi sh renoved." >> "$LOGFI LE"
rm " $BZI P

}

DAY="dat e +%W

if ["$DAY" -1t "2"]; then
echo "It is "date +%A', only backing up Bash course." >> "$LOGFI LE"
bupbash

el se
bupl i nux

bupbash
fi

echo -e "Renpte backup "date’ SUCCESS\n---------- " >> "$LOGFI LE"

This script runs from cron, meaning without user interaction, so we redirect standard error from the scp
commandto/ dev/ nul | .

It might be argued that all the separate steps can be combined in acommand such as
tar ¢ dir_to_backup/ | bzip2 | ssh server "cat > backup.tar.bz2"

However, if you areinterested in intermediate results, which might be recovered upon failure of the script,
thisis not what you want.

The expression

142

Functions

conmmand &> file
is equivalent to

command > file 2>&1

Summary

Functions provide an easy way of grouping commands that you need to execute repetitively. When a
function isrunning, the positional parameters are changed to those of the function. When it stops, they are
reset to those of the calling program. Functions are like mini-scripts, and just like a script, they generate
exit or return codes.

While this was a short chapter, it containsimportant knowledge needed for achieving the ultimate state of
laziness that is the typical goal of any system administrator.

Exercises

Here are some useful things you can do using functions:

1. Add afunction to your ~/ . bashr c config file that automates the printing of man pages. The result
should be that you type something like printman <command>, upon which the first appropriate man
page rolls out of your printer. Check using a pseudo printer device for testing purposes.

Asan extra, build in a possibility for the user to supply the section number of the man page he or she
wants to print.

2. Createasubdirectory inyour homedirectory inwhich you can store function definitions. Put acoupl e of
functionsinthat directory. Useful functions might be, amongs others, that you have the same commands
as on DOS or a commercial UNIX when working with Linux, or vice versa. These functions should
then be imported in your shell environment when ~/ . bashr ¢ isread.

143

Chapter 12. Catching signals

In this chapter, we will discuss the following subjects:
» Availablesignals

» Useof thesignals

» Useof thetrap statement

» How to prevent users from interrupting your programs

Signals

Introduction

Finding the signal man page

Y our system containsaman pagelisting all the available signals, but depending on your operating system,
it might be opened in adifferent way. On most Linux systems, thiswill be man 7 signal. When in doubt,
locate the exact man page and section using commands like

man -k signal | grep list
or
apropos signal | grep list

Signal names can be found using kill -I.

Signals to your Bash shell

In the absence of any traps, an interactive Bash shell ignores SGTERM and SGQUIT. SGINT is caught
and handled, and if job control is active, SGTTIN, SGTTOU and SGTSTP are also ignored. Commands
that are run as the result of a command substitution also ignore these signals, when keyboard generated.

S GHUP by default exits ashell. An interactive shell will send a SGHUP to al jobs, running or stopped;
see the documentation on the disown built-in if you want to disable this default behavior for a particular
process. Usethehuponexi t option for killing all jobs upon receiving aSIGHUP signal, using the shopt
built-in.

Sending signals using the shell

The following signals can be sent using the Bash shell:

Table 12.1. Control signalsin Bash

Standard key combination M eaning

Ctrl+C Theinterrupt signal, sends SIGINT to the job run-
ning in the foreground.

Ctrl+Y The delayed suspend character. Causes a running
process to be stopped when it attemptsto read in-
put from the terminal. Control is returned to the

144

Catching signals

M eaning

shell, the user can foreground, background or kill
the process. Delayed suspend is only available on
operating systems supporting this feature.

Standard key combination

Ctrl+z The suspend signal, sends a SGTSTP to arunning
program, thus stopping it and returning control to

the shell.

Terminal settings

Check your stty settings. Suspend and resume of output isusually disabled if you are using “ mod-
ern” terminal emulations. The standard xterm supports Ctrl+S and Ctrl1+Q by default.

Usage of signals with Kill

Most modern shells, Bash included, have abuilt-in kill function. In Bash, both signal names and numbers
are accepted as options, and arguments may be job or process IDs. An exit status can be reported using
the- | option: zero when at least one signal was successfully sent, non-zero if an error occurred.

Using the kill command from / usr/ bi n, your system might enable extra options, such as the ability
to kill processes from other than your own user 1D and specifying processes by name, like with pgrep
and pkill.

Both kill commands send the TERM signal if noneis given.

Thisisalist of the most common signals:

Table 12.2. Common kill signals

Signal name Signal value Effect

SIGHUP 1 Hangup

SIGINT 2 Interrupt from keyboard
SIGKILL 9 Kill signa

SIGTERM 15 Termination signal
SIGSTOP 17,19,23 Stop the process

SIGKILL and SIGSTOP

SGKILL and SSGSTOP can not be caught, blocked or ignored.

When killing a process or series of processes, it is common sense to start trying with the least dangerous
signal, SGTERM. That way, programs that care about an orderly shutdown get the chance to follow the
procedures that they have been designed to execute when getting the SGTERM signal, such as cleaning
up and closing open files. If you send a SGKILL to a process, you remove any chance for the process to
do atidy cleanup and shutdown, which might have unfortunate conseguences.

But if a clean termination does not work, the INT orKILL signals might be the only way. For instance,
when a process does not die using Ctrl+C, it is best to use the kill - 9 on that process ID:

maud: ~> ps -ef | grep stuck_process

maud 5607 2214 0 20:05 pts/5 00: 00: 02 stuck_process

145

Catching signals

maud: ~> kill -9 5607

maud: ~> ps -ef | grep stuck_process
maud 5614 2214 0 20:15 pts/5 00: 00: 00 grep stuck_process
[1]+ Killed stuck_process

When a process starts up several instances, killall might be easier. It takes the same option as the Kill
command, but applies on all instances of agiven process. Test thiscommand beforeusing it in aproduction
environment, since it might not work as expected on some of the commercial Unices.

Traps

General

There might be situations when you don't want users of your scriptsto exit untimely using keyboard abort
sequences, for example because input has to be provided or cleanup has to be done. The trap statement
catchesthese sequences and can be programmed to execute alist of commands upon catching those signals.

The syntax for the trap statement is straightforward:
trap [COWWANDS] [SI GNALS]

Thisinstructsthe trap command to catch thelisted S GNALS, which may be signal names with or without
the S G prefix, or signal numbers. If asignal isO or EXIT, the COMMANDS are executed when the shell
exits. If one of thesignalsisDEBUG, thelist of COM M ANDS s executed after every simple command. A
signal may also be specified as ERR; in that case COM M ANDS are executed each time asimple command
exits with anon-zero status. Note that these commands will not be executed when the non-zero exit status
comes from part of anif statement, or from awhile or until loop. Neither will they be executed if alogical
AND (& &) or OR (]|) result in a non-zero exit code, or when a command's return status is inverted using
the ! operator.

The return status of the trap command itself is zero unless an invalid signal specification is encountered.
The trap command takes a couple of options, which are documented in the Bash info pages.

Here is avery simple example, catching Ctrl+C from the user, upon which a message is printed. When
you try to kill this program without specifying the KILL signal, nothing will happen:

#!/ bi n/ bash
traptest.sh

trap "echo Booh!" SIG NT S| GTERM
echo "pid is $$"

while : # This is the sane as "while true".
do

sleep 60 # This script is not really doing anything.
done

How Bash interprets traps

When Bash receives a signal for which a trap has been set while waiting for a command to complete,
the trap will not be executed until the command completes. When Bash is waiting for an asynchronous

146

Catching signals

command viathe wait built-in, the reception of asignal for which atrap has been set will cause the wait
built-in to return immediately with an exit status greater than 128, immediately after which the trap is
executed.

More examples

Detecting when a variable is used
When debugging longer scripts, you might want to give a variable the trace attribute and trap DE-
BUG messages for that variable. Normally you would just declare a variable using an assignment like

VARI ABL E=value. Replacing the declaration of the variable with the following lines might provide valu-
able information about what your script is doing:

decl are -t VARI ABLE=val ue
trap "echo VARI ABLE is being used here." DEBUG

rest of the script

Removing rubbish upon exit

The whatis command relies on a database which is regularly built using the makewhat i s. cr on script
with cron:

#1/ bi n/ bash

LOCKFI LE=/ var /| ock/ makewhati s. | ock

Previ ous makewhati s shoul d execute successfully:
[-f SLOCKFILE] &% exit O

Upon exit, renove | ockfile.

trap "{ rm-f $LOCKFILE ; exit 255; }" EXIT

touch $LOCKFI LE

makewhatis -u -w
exit O

Summary

Signals can be sent to your programs using the kill command or keyboard shortcuts. These signals can be
caught, upon which action can be performed, using the trap statement.

Some programs ignore signals. The only signal that no program can ignore is the KILL signal.

Exercises

A couple of practical examples:

147

Catching signals

1. Create ascript that writes aboot image to a diskette using the dd utility. If the user triesto interrupt the
script using Ctrl+C, display a message that this action will make the diskette unusable.

2. Write ascript that automates theinstallation of athird-party package of your choice. The package must
be downloaded from the Internet. It must be decompressed, unarchived and compiled if these actions
are appropriate. Only the actual installation of the package should be uninterruptable.

148

Appendix A. Shell Features

Thisdocument givesan overview of common shell features (the samein every shell flavour) and differing shell features
(shell specific features).

Common features

Thefollowing features are standard in every shell. Note that the stop, suspend, jobs, bg and fg commands
are only available on systems that support job control.

Table A.1. Common Shell Features

Command M eaning

> Redirect output

>> Appendtofile

< Redirect input

<< "Here" document (redirect input)
| Pipe output

& Run process in background.

Separate commands on same line

*

Match any character(s) in filename

? Match single character in filename
[Match any characters enclosed

O Execute in subshell
o Substitute output of enclosed command

Partial quote (allows variable and command ex-
pansion)

Full quote (no expansion)

Quote following character

\

$var Use valuefor variable
$$ Processid
$0

$n

#

Command name

nth argument (n from 0 to 9)

Begin comment

bg Background execution
break Break from loop statements
cd Change directories
continue Resume a program loop
echo Display output

eval Evaluate arguments

exec Execute anew shell

fg Foreground execution

149

Shell Features

Command M eaning

jobs Show active jobs

kill Terminate running jobs

newgrp Change to a new group

shift Shift positional parameters

stop Suspend a background job
suspend Suspend a foreground job

time Time acommand

umask Set or list file permissions

unset Erase variable or function definitions
wait Wait for a background job to finish

Differing features

The table below shows major differences between the standard shell (sh), Bourne Again SHell (bash),
Korn shell (ksh) and the C shell (csh).

Shell compatibility

Since the Bourne Again SHell is a superset of sh, al sh commands will also work in bash - but
not vice versa. bash has many more features of its own, and, as the table below demonstrates,
many features incorporated from other shells.

Since the Turbo C shell is a superset of csh, al csh commands will work in tcsh, but not the
other way round.

Table A.2. Differing Shell Features

sh bash ksh csh M eaning/Action
$ $ $ % Default user
prompt
>| >| > Force redirection
>file2>&1 &>fileor> >file2>&1 >& file Redirect stdout and
file2>&1 stderrtofil e
{} {} Expand elementsin
list
‘command’ ‘command” or $(command) ‘command’ Substitute output
$(command) of enclosed com-
mand
$HOVE $HOVE $HOVE $hone Home directory
~ ~ ~ Home directory
symbol
~+,~ dirs ~+, ~- =,=N Access directory
stack
var =value VAR=value var =value set var =value Variable assign-
ment

150

Shell Features

sh bash ksh csh M eaning/Action
export var export VAR=value |export var =val setenv var val Set environment
variable
${ nnnn} ${ nn} More than 9 argu-
ments can be refer-
enced
"$@ "$@ "$@ All arguments as
separate words
$# $# $# $#ar gv Number of argu-
ments
$? $? $? $st at us Exit status of the
most recently exe-
cuted command
$! $! $! PID of most recent-
ly backgrounded
process
$- $- $- Current options
file sourcefileor. |.file sourcefil e Read commandsin
file file
aliasx="y' alias x=y aliasxy Name x stands for
command y
case case case switch or case Choose alternatives
done done done end End aloop state-
ment
esac esac esac endsw End case or switch
exit n exit n exit n exit (expr) Exit with a status
for/do for/do for/do foreach Loop through vari-
ables
set-f,set-0 noglob Ignore substitution
nul | gl ob]| dot - charactersfor file-
gl ob| nocase- name generation
gl ob| nogl ob
hash hash alias-t hashstat Display hashed
commands (tracked
aliases)
hash cnds hash cnds alias-t cnds rehash Remember com-
mand locations
hash - r hash - r unhash Forget command
locations
history history history List previous com-
mands
ArrowUp+Enter |r I Redo previous
or!! command

151

Shell Features

sh bash ksh csh M eaning/Action
Istr rstr Istr Redo last com-
mand that starts
with “str”
lend:sixly/ r x=y cnd lend:s/xly/ Replace “x” with
“y” in most recent
command starting
with “cmd”, then
execute.
if[$i -eq5] if[$i -eq5] if ((i ==5)) if ($i ==5) Sample condition
test
fi fi fi endif End if statement
ulimit ulimit ulimit limit Set resource limits
pwd pwd pwd dirs Print working di-
rectory
read read read $< Read from terminal
trap 2 trap 2 trap 2 onintr Ignoreinterrupts
unalias unalias unalias Remove aliases
until until until Begin until loop
while/do while/do while/do while Begin while loop

The Bourne Again SHell has many more features not listed here. Thistableisjust to give you an idea of
how this shell incorporates al useful ideas from other shells: there are no blanks in the column for bash.
More information on features found only in Bash can be retrieved from the Bash info pages, in the “Bash
Features’ section.

More information:

Y ou should at least read one manual, being the manual of your shell. The preferred choice would be info
bash, bash being the GNU shell and easiest for beginners. Print it out and take it home, study it whenever
you have 5 minutes.

152

Glossary

This section contains an alphabetical overview of common UNIX commands. More information about the usage can
be found in the man or info pages.

A

a2ps Format files for printing on a PostScript printer.

acroread PDF viewer.

adduser Create anew user or update default new user information.

dias Create ashell dias for acommand.

anacron Execute commands periodically, does not assume continuously running machine.

apropos Search the whatis database for strings.

apt-get APT package handling utility.

aspell Spell checker.

a, atq, atrm Queue, examine or delete jobs for later execution.

aumix Adjust audio mixer.

(g)awk Pattern scanning and processing language.

B

bash Bourne Again SHell.

batch Queue, examine or delete jobs for later execution.

bg Run ajob in the background.

bitmap Bitmap editor and converter utilities for the X window System.

bzip2 A block-sorting file compressor.

C

cat Concatenate files and print to standard output.

cd Change directory.

cdp/cdplay An interactive text-mode program for controlling and playing audio CD Roms
under Linux.

cdparanoia An audio CD reading utility which includes extra data verification features.

cdrecord Record aCD-R.

153

Glossary

chattr
chgrp
chkconfig
chmod
chown
compress
cp
crontab
csh

cut

D

date
dd

df
dhcpcd
diff
dig
dmesg
du

echo
ediff
egrep
gject

emacs

Changefile attributes.

Change group ownership.

Update or query run level information for system services.
Change file access permissions.

Change file owner and group.

Compressfiles.

Copy filesand directories.

Maintain crontab files.

Open aC shell.

Remove sections from each line of file(s).

Print or set system date and time.

Convert and copy afile (disk dump).

Report file system disk usage.

DHCP client daemon.

Find differences between two files.

Send domain name query packets to name servers.
Print or control the kernel ring buffer.

Estimate file space usage.

Display aline of text.

Diff to English trand ator.

Extended grep.

Unmount and g ect removable media.
Start the Emacs editor.

Invoke subprocess(es).

Exit current shell.

Add function(s) to the shell environment.

154

Glossary

F

fax2ps
fdformat
fdisk
fetchmail
fg

file

find
formail
fortune

ftp

G

galeon

gdm
(min/a)getty
gimp

grep

grub

gv

gzip

H

halt

head
help
host

httpd

Convert a TIFF facsimile to PostScript.

Format floppy disk.

Partition table manipulator for Linux.

Fetch mail from a POP, IMAP, ETRN or ODMR-capable server.
Bring ajob in the foreground.

Determinefile type.

Find files.

Mail (re)formatter.

Print arandom, hopefully interesting adage.

Transfer files (unsafe unless anonymous account is used!)services.

Graphical web browser.
Gnome Display Manager.
Control console devices.
Image manipulation program.
Print lines matching a pattern.
The grub shell.

A PostScript and PDF viewer.

Compress or expand files.

Stop the system.

Output the first part of files.

Display help on a shell built-in command.
DNS lookup utility.

Apache hypertext transfer protocol server.

Print real and effective UIDs and GIDs.

155

Glossary

ifconfig
info

init
iostat

ip
ipchains

iptables

J
jar

jobs

K

kdm
kill(all)
ksh

L

Idapmodify
Idapsearch
less

lilo

links

In

loadkeys

locate

Configure network interface or show configuration.
Read Info documents.

Process control initialization.

Display 1/0 dtatistics.

Display/change network interface status.

IP firewall administration.

I P packet filter administration.

Java archive tool.

List backgrounded tasks.

Desktop manager for KDE.
Terminate process(es).

Open aKorn shell.

Modify an LDAP entry.

LDAP search tool.

mor e with features.

Linux boot loader.

Text mode WWW browser.

Make links between files.

L oad keyboard translation tables.
Find files.

Close current shell.

Send requests to the LP print service.
Line printer control program.

Print spool queue examination program.

Offline print.

156

Glossary

Iprm

lynx

mail

man

mcopy
mdir
memusage
memusagestat
mesg
mformat
mkbootdisk
mkdir
mkisofs
more
mount
mozilla

mt

mtr

mv

N

named
ncftp

netstat

nfsstat
nice

nmap

Remove print requests.
List directory content.

Text mode WWW browser.

Send and receive mail.

Read man pages.

Copy MSDOS files to/from Unix.

Display an MSDOS directory.

Display memory usage.

Display memory usage statistics.

Control write access to your terminal.

Add an MSDOS file system to alow-level formatted floppy disk.
Creates a stand-alone boot floppy for the running system.

Create directory.

Create a hybrid 1SO9660 filesystem.

Filter for displaying text one screen at the time.

Mount afile system or display information about mounted file systems.
Web browser.

Control magnetic tape drive operation.

Network diagnostic tool.

Rename files.

Internet domain name server.
Browser program for ftp services (insecure!).

Print network connections, routing tables, interface statistics, masguerade connec-
tions, and multi-cast memberships.

Print statistics about networked file systems.
Run a program with modified scheduling priority.

Network exploration tool and security scanner.

157

Glossary

ntsysv

P

passwd
pdf2ps
perl

P9

ping

pr
printenv
procmail
ps
pstree

pwd

quota

rcp
rdesktop
reboot
renice
rlogin
rm
rmdir
rpm

rsh

scp

screen

Simple interface for configuring run levels.

Change password.

Ghostscript PDF to PostScript translator.
Practical Extraction and Report Language.
Page through text output.

Send echo request to a host.

Convert text files for printing.

Print all or part of environment.
Autonomous mail processor.

Report process status.

Display atree of processes.

Print present working directory.

Display disk usage and limits.

Remote copy (unsafel)

Remote Desktop Protocol client.
Stop and restart the system.

Alter priority of arunning process.
Remote login (telnet, insecure!).
Remove afile.

Remove a directory.

RPM Package Manager.

Remote shell (insecure!).

Secure remote copy.

Screen manager with VT100 emulation.

158

Glossary

setterm
sftp

sh
shutdown
sleep
slocate
slrnn
snort

sort

ssh-keygen

stty

tac

tail

talk

tar

tcsh
telnet
tex

time

tin

top
touch
traceroute
tripwire

twm

Display, set or change variable.

Set terminal attributes.

Secure (encrypted) ftp.

Open a standard shell.

Bring the system down.

Wait for a given period.

Security Enhanced version of the GNU Locate.
text mode Usenet client.

Network intrusion detection tool.

Sort lines of text files.

Secure shell.

Authentication key generation.

Change and print terminal line settings.

Switch user.

Concatenate and print filesin reverse.

Output the last part of files.

Tak to auser.

Archiving utility.

Open aTurbo C shell.

User interface to the TELNET protocol (insecure!).
Text formatting and typesetting.

Time asimple command or give resource usage.
News reading program.

Display top CPU processes.

Change file timestamps.

Print the route packets take to network host.

A fileintegrity checker for UNIX systems.

Tab Window Manager for the X Window System.

159

Glossary

U

ulimit
umask
umount
uncompress
uniq

update
uptime

userdel

V

vi(m)
vimtutor

vmstat

W

w
wall

wc
which
who
who ami
whois

write

X

xauth
xcdroast
xclock
xconsole

xdm

Controll resources.

Set user file creation mask.

Unmount afile system.

Decompress compressed files.

Remove duplicate lines from a sorted file.

Kernel daemon to flush dirty buffers back to disk.
Display system uptime and average load.

Delete auser account and related files.

Start the vi (improved) editor.
The Vim tutor.

Report virtual memory statistics.

Show who is logged on and what they are doing.
Send a message to everybody's terminal.

Print the number of bytes, words and linesin files.
Shows the full path of (shell) commands.

Show who is logged on.

Print effective user ID.

Query awhois or nicname database.

Send a message to another user.

X authority file utility.

Graphical front end to cdrecord.
Analog/digital clock for X.

Monitor system console messages with X.

X Display Manager with support for XDMCP, host chooser.

160

Glossary

Xavi

xfs
xhost
xinetd
xload
xlsfonts
Xmms
xpdf

xterm

Z

Zcat

Zgrep

zmore

DVI viewer.

X font server.

Server access control program for X
The extended Internet services daemon.
System load average display for X.
Server font list displayer for X.

Audio player for X.

PDF viewer.

Terminal emulator for X.

Compress or expand files.
Search possibly compressed files for aregular expression.

Filter for viewing compressed text.

161

Index
A

aliases

ANSI-C quoting
arguments
arithmetic expansion
arithmetic operators
array

awk

awkprogram

B

bash

.bash_login
.bash_logout
.bash_profile
.bashrc

batch editor

break

boolean operators
Bourne shell
brace expansion

built-in commands

C

case statements
character classes
child process
combined expressions

command substitution

the section called “What are aliases?’

the section called “ANSI-C quoting”

the section called “ Checking command line arguments’
the section called “ Process substitution”

the section called “ Process substitution”

the section called “ Creating arrays’

the section called “ Getting started with gawk”

the section called “ Gawk commands’

the section called “ Advantages of the Bourne Again SHell”
the section called “~/.bash_login”

the section called “~/.bash_logout”

the section called “~/.bash_profile”

the section called “~/.bashrc”

the section called “What is sed?’

the section called “The break built-in”

the section called “Boolean operations’

the section called “ Shell types’

the section called “ Tilde expansion”

the section called “ Shell built-in commands’

the section called “Using the exit statement and if”

the section called “ Character classes’, the section called “ Character classes’
the section called “ General”

the section called “ Expressions used with if”

the section called “ Arithmetic expansion”

162

Index

comments
conditionals
configuration files
constants
continue

control signals
creating variables

csh

D

debugging scripts
declare

double quotes

E

echo

editors

else

emacs

env

esac

escape characters
escape sequences
/etc/bashre
/etc/passwd
[etc/profile
[etc/shells

exec

execute permissions

execution

the section called “ Adding comments”

the section called “Introduction to if”

the section called “ Shell initialization files’

the section called “ Constants”

the section called “ The continue built-in”

the section called “ Sending signals using the shell”
the section called “ Creating variables’

The C shell, the section called “ Shell types”

the section called “ Debugging Bash scripts’
the section called “ Using the declare built-in”, the section called “ Creating arrays’

the section called “ Double quotes”

the section called “An example Bash script: mysystem.sh”, the section called
“scriptl.sh”, the section called “Debugging on part(s) of the script”, the section
called “ Using the echo built-in command”

the section called “Writing and naming”

the section called “if/then/el se constructs’

the section called “Writing and naming”

the section called “Global variables’

the section called “Using the exit statement and if”
the section called “ Escape characters’

the section called “Using the echo built-in command”
the section called “/etc/bashrc”

the section called “ Shell types’

the section called “ System-wide configuration files”
the section called “ Shell types’

the section called “General”, the section called “ Read and exec”
the section called “ Executing the script”

the section called “ Executing the script”

163

Index

exit

exit status
expansion
export

extended regular expressions

F

file descriptors

file name expansion
find and replace

for

fork

functions

G

gawk

gawk commands
gawk fields
gawk formatting
gawk scripts
gawk variables
gedit

global variables
globbing

grep

H

here document

if

the section called “Using the exit statement and if”

the section called “ Testing exit status”

the section called “ Shell expansions’, the section called “ Shell expansion”
the section called “ Exporting variables”

the section called “Basic versus extended regular expressions”

the section called “Redirection and file descriptors’, the section called “Using /
dev/fd”

the section called “ File name expansion”

the section called “Find and replace with sed”
the section called “ The for loop”

the section called “ General”

the section called “What are functions?’

the section called “What is gawk?’

the section called “ Gawk commands”

the section called “ Printing selected fields”

the section called “ Formatting fields”

the section called “ Gawk scripts’

the section called “ Gawk variables’

the section called “Writing and naming”

the section called “Global variables’

the section called “ Debugging on part(s) of the script”

the section called “What is grep?’

the section called “Here documents’

the section called “ General”

164

Index

init
initialization files

input field separator

interactive editing
interactive scripts

interactive shell

invocation

J

kill
killall

ksh

L

length of avariable
line anchors

locale

locate

logic flow

login shell

M

menu

metacharacters

N

nested if statements

the section called “ General”, the section called “ Example init script”
the section called “ Shell initialization files”

the section called “Bourne shell reserved variables’, the section called “ Special
parameters’, the section called “ Gawk variables’

the section called “Interactive editing”
the section called “ Displaying user messages’

the section called “Invoked as an interactive login shell, or with “--login™, the
section called “Invoked as an interactive non-login shell”, the section called “In-
teractive shell behavior”

the section called “Invocation”

the section called “ Usage of signals with kill”
the section called “ Usage of signals with kill”

Korn shell, the section called “ Shell types”

the section called “Length of avariable’

the section called “Line and word anchors”
the section called “Locales’

the section called “Writing and naming”

the section called “ A word on order and logic”

the section called “Invoked as an interactive login shell, or with *--login”

the section called “Making menus with the select built-in”

the section called “Regular expression metacharacters’

the section called “Nested if statements’

165

Index

noglob
non-interactive editing
non-interactive shell
non-login shell

numeric comparisons

O

options

output field separator

output record separator

P

parameter expansion
PATH
pattern matching

positional params

POSIX

POSIX mode
primary expressions
printenv

printf

process substitution
.profile

prompt

Q

guoting characters

R

redirection

the section called “ Debugging on part(s) of the script”

the section called “Non-interactive editing”

the section called “Invoked non-interactively”

the section called “Invoked as an interactive non-login shell”

the section called “Numeric comparisons’

the section called “ Displaying options’
the section called “The output field separator”

the section called “ The output record separator”

the section called “Command substitution”
the section called “ scriptl.sh”
the section called “ Pattern matching using Bash features”

the section called “ Special parameters’, the section called “ Positional parameters
in functions’

the section called “Bash is the GNU shell”
the section called “POSI X mode”

the section called “ Expressions used with if”
the section called “Global variables’

the section called “ An example Bash script: mysystem.sh”, the section called “ The
printf program”

the section called “Word splitting”
the section called “~/.profile’

the section called “ Changing shell configuration files’

the section called “ Quoting characters”

the section called “ Executing commands’, the section called “ Changing options’,
the section called “ Redirection and file descriptors’, the section called “1/0 redi-
rection and loops”

166

Index

rbash
read

readonly

regular expression operators

regular expressions
remote invocation
removing aliases
reserved variables

return

S

sed

sed editing commands

sed options
sed script
select

set

shift

signals

single quotes
source

special parameters
special variables
standard error
standard input
standard output
string comparisons
stty

submenu

the section called “ The restricted shell”
the section called “ Using the read built-in command”

the section called “ Constants’

the section called “Regular expression metacharacters’, the section called “Inter-

active editing”, the section called “ Special patterns’
the section called “ Regular expressions’

the section called “Invoked remotely”

the section called “ Creating and removing aliases’
the section called “Reserved variables’

the section called “ Positional parameters in functions’

the section called “Introduction”
the section called “ sed commands”
the section called “ sed commands’

the section called “Writing output files’

the section called “Making menus with the select built-in”

the section called “Local variables’, the section called “Displaying options’, the

section called “ Displaying functions’
the section called “ The shift built-in”
the section called “Introduction”

the section called “ Single quotes”

the section called “ Executing the script”
the section called “ Special parameters”
the section called “ Special parameters’
the section called “ General”

the section called “ General”

the section called “ General”

the section called “ String comparisons”
the section called “Introduction”

the section called “ Submenus’

167

Index

subshell

substitution

substring

syntax

T

tcsh
terminology
then

tilde expansion

transformation of variables

traps

true

U

unalias
unset

until

user input

user messages

V

variables
variable expansion
verbose

vi(m)

W

wait

the section called “Which shell will run the script?’

the section called “ Substitution”, the section called “Replacing parts of variable
names’

the section called “ Removing substrings’

the section called “ Shell syntax”

the section called “ Shell types’

the section called “ Terminology”

the section called “ Commands following the then statement”
the section called “ Shell parameter and variable expansion”
the section called “ Transformations of variables’

the section called “ General”

the section called “ Nested while loops”

the section called “What are aliases?’, the section called “ Creating and removing
aliases’

the section called “Creating variables’, the section called “Deleting array vari-
ables’, the section called “ Displaying functions”

the section called “The until loop”

the section called “Using the read built-in command”, the section called “ Prompt-
ing for user input”

the section called “Interactive or not?’

the section called “Variables’, the section called “ Types of variables’
the section called “ Command substitution”
the section called “ Debugging on part(s) of the script”

the section called “Writing and naming”

the section called “How Bash interprets traps’

168

Index

whereis
which

while
wildcards
word anchors

word splitting

X

xtrace

the section called “Writing and naming”
the section called “Writing and naming”
the section called “ The while loop”

the section called “Wildcards’

the section called “Line and word anchors’

the section called “ File name expansion”

the section called “ Debugging on the entire script”, the section called “ Debugging
on part(s) of the script”

169

	Bash Guide for Beginners
	Table of Contents
	Introduction
	Why this guide?
	Who should read this book?
	New versions, translations and availability
	Revision History
	Contributions
	Feedback
	Copyright information
	What do you need?
	Conventions used in this document
	Organization of this document

	Chapter 1. Bash and Bash scripts
	Common shell programs
	General shell functions
	Shell types

	Advantages of the Bourne Again SHell
	Bash is the GNU shell
	Features only found in bash
	Invocation
	Bash startup files
	Invoked as an interactive login shell, or with `--login'
	Invoked as an interactive non-login shell
	Invoked non-interactively
	Invoked with the sh command
	POSIX mode
	Invoked remotely
	Invoked when UID is not equal to EUID

	Interactive shells
	What is an interactive shell?
	Is this shell interactive?
	Interactive shell behavior

	Conditionals
	Shell arithmetic
	Aliases
	Arrays
	Directory stack
	The prompt
	The restricted shell

	Executing commands
	General
	Shell built-in commands
	Executing programs from a script

	Building blocks
	Shell building blocks
	Shell syntax
	Shell commands
	Shell functions
	Shell parameters
	Shell expansions
	Redirections
	Executing commands
	Shell scripts

	Developing good scripts
	Properties of good scripts
	Structure
	Terminology
	A word on order and logic
	An example Bash script: mysystem.sh
	Example init script

	Summary
	Exercises

	Chapter 2. Writing and debugging scripts
	Creating and running a script
	Writing and naming
	script1.sh
	Executing the script

	Script basics
	Which shell will run the script?
	Adding comments

	Debugging Bash scripts
	Debugging on the entire script
	Debugging on part(s) of the script

	Summary
	Exercises

	Chapter 3. The Bash environment
	Shell initialization files
	System-wide configuration files
	/etc/profile
	/etc/bashrc

	Individual user configuration files
	~/.bash_profile
	~/.bash_login
	~/.profile
	~/.bashrc
	~/.bash_logout

	Changing shell configuration files

	Variables
	Types of variables
	Global variables
	Local variables
	Variables by content

	Creating variables
	Exporting variables
	Reserved variables
	Bourne shell reserved variables
	Bash reserved variables

	Special parameters
	Script recycling with variables

	Quoting characters
	Why?
	Escape characters
	Single quotes
	Double quotes
	ANSI-C quoting
	Locales

	Shell expansion
	General
	Brace expansion
	Tilde expansion
	Shell parameter and variable expansion
	Command substitution
	Arithmetic expansion
	Process substitution
	Word splitting
	File name expansion

	Aliases
	What are aliases?
	Creating and removing aliases

	More Bash options
	Displaying options
	Changing options

	Summary
	Exercises

	Chapter 4. Regular expressions
	Regular expressions
	What are regular expressions?
	Regular expression metacharacters
	Basic versus extended regular expressions

	Examples using grep
	What is grep?
	Grep and regular expressions
	Line and word anchors
	Character classes
	Wildcards

	Pattern matching using Bash features
	Character ranges
	Character classes

	Summary
	Exercises

	Chapter 5. The GNU sed stream editor
	Introduction
	What is sed?
	sed commands

	Interactive editing
	Printing lines containing a pattern
	Deleting lines of input containing a pattern
	Ranges of lines
	Find and replace with sed

	Non-interactive editing
	Reading sed commands from a file
	Writing output files

	Summary
	Exercises

	Chapter 6. The GNU awk programming language
	Getting started with gawk
	What is gawk?
	Gawk commands

	The print program
	Printing selected fields
	Formatting fields
	The print command and regular expressions
	Special patterns
	Gawk scripts

	Gawk variables
	The input field separator
	The output separators
	The output field separator
	The output record separator

	The number of records
	User defined variables
	More examples
	The printf program

	Summary
	Exercises

	Chapter 7. Conditional statements
	Introduction to if
	General
	Expressions used with if
	Commands following the then statement
	Checking files
	Checking shell options

	Simple applications of if
	Testing exit status
	Numeric comparisons
	String comparisons

	More advanced if usage
	if/then/else constructs
	Dummy example
	Checking command line arguments
	Testing the number of arguments
	Testing that a file exists

	if/then/elif/else constructs
	General
	Example

	Nested if statements
	Boolean operations
	Using the exit statement and if

	Using case statements
	Simplified conditions
	Initscript example

	Summary
	Exercises

	Chapter 8. Writing interactive scripts
	Displaying user messages
	Interactive or not?
	Using the echo built-in command

	Catching user input
	Using the read built-in command
	Prompting for user input
	Redirection and file descriptors
	General
	Redirection of errors

	File input and output
	Using /dev/fd
	Read and exec
	Assigning file descriptors to files
	Read in scripts

	Closing file descriptors
	Here documents

	Summary
	Exercises

	Chapter 9. Repetitive tasks
	The for loop
	How does it work?
	Examples
	Using command substitution for specifying LIST items
	Using the content of a variable to specify LIST items

	The while loop
	What is it?
	Examples
	Simple example using while
	Nested while loops
	Using keyboard input to control the while loop
	Calculating an average

	The until loop
	What is it?
	Example

	I/O redirection and loops
	Input redirection
	Output redirection

	Break and continue
	The break built-in
	The continue built-in
	Examples

	Making menus with the select built-in
	General
	Use of select
	Examples

	Submenus

	The shift built-in
	What does it do?
	Examples

	Summary
	Exercises

	Chapter 10. More on variables
	Types of variables
	General assignment of values
	Using the declare built-in
	Constants

	Array variables
	Creating arrays
	Dereferencing the variables in an array
	Deleting array variables
	Examples of arrays

	Operations on variables
	Arithmetic on variables
	Length of a variable
	Transformations of variables
	Substitution
	Removing substrings
	Replacing parts of variable names

	Summary
	Exercises

	Chapter 11. Functions
	Introduction
	What are functions?
	Function syntax
	Positional parameters in functions
	Displaying functions

	Examples of functions in scripts
	Recycling
	Setting the path
	Remote backups

	Summary
	Exercises

	Chapter 12. Catching signals
	Signals
	Introduction
	Finding the signal man page
	Signals to your Bash shell
	Sending signals using the shell

	Usage of signals with kill

	Traps
	General
	How Bash interprets traps
	More examples
	Detecting when a variable is used
	Removing rubbish upon exit

	Summary
	Exercises

	Appendix A. Shell Features
	Common features
	Differing features

	Glossary
	Index

