
Bash Guide for Beginners

Machtelt Garrels, Garrels BVBA
<tille wants no spam _at_ garrels dot be>

Bash Guide for Beginners
by Machtelt Garrels

iii

Table of Contents
Introduction .. x

Why this guide? .. x
Who should read this book? .. x
New versions, translations and availability .. xi
Revision History .. xi
Contributions .. xii
Feedback .. xii
Copyright information .. xii
What do you need? ... xiii
Conventions used in this document .. xiii
Organization of this document .. xiv

1. Bash and Bash scripts .. 1
Common shell programs ... 1

General shell functions ... 1
Shell types ... 1

Advantages of the Bourne Again SHell ... 2
Bash is the GNU shell ... 2
Features only found in bash .. 2

Executing commands ... 7
General .. 7
Shell built-in commands ... 7
Executing programs from a script .. 8

Building blocks ... 8
Shell building blocks ... 8

Developing good scripts ... 11
Properties of good scripts ... 11
Structure .. 11
Terminology ... 11
A word on order and logic .. 12
An example Bash script: mysystem.sh ... 12
Example init script .. 14

Summary .. 15
Exercises .. 15

2. Writing and debugging scripts .. 17
Creating and running a script .. 17

Writing and naming ... 17
script1.sh .. 18
Executing the script ... 19

Script basics ... 20
Which shell will run the script? ... 20
Adding comments .. 21

Debugging Bash scripts .. 21
Debugging on the entire script ... 21
Debugging on part(s) of the script .. 22

Summary .. 24
Exercises .. 25

3. The Bash environment .. 26
Shell initialization files ... 26

System-wide configuration files ... 26
Individual user configuration files .. 28
Changing shell configuration files .. 31

Bash Guide for Beginners

iv

Variables .. 32
Types of variables ... 32
Creating variables .. 34
Exporting variables .. 35
Reserved variables ... 36
Special parameters ... 40
Script recycling with variables ... 43

Quoting characters ... 44
Why? ... 44
Escape characters .. 44
Single quotes .. 44
Double quotes ... 45
ANSI-C quoting .. 45
Locales .. 45

Shell expansion ... 45
General .. 45
Brace expansion .. 46
Tilde expansion ... 46
Shell parameter and variable expansion ... 47
Command substitution .. 47
Arithmetic expansion ... 48
Process substitution .. 49
Word splitting ... 50
File name expansion .. 50

Aliases ... 51
What are aliases? .. 51
Creating and removing aliases ... 52

More Bash options .. 53
Displaying options ... 53
Changing options ... 53

Summary .. 54
Exercises .. 55

4. Regular expressions .. 56
Regular expressions ... 56

What are regular expressions? ... 56
Regular expression metacharacters .. 56
Basic versus extended regular expressions ... 57

Examples using grep .. 57
What is grep? ... 57
Grep and regular expressions ... 58

Pattern matching using Bash features .. 60
Character ranges .. 60
Character classes ... 61

Summary .. 61
Exercises .. 62

5. The GNU sed stream editor ... 63
Introduction .. 63

What is sed? ... 63
sed commands .. 63

Interactive editing .. 64
Printing lines containing a pattern .. 64
Deleting lines of input containing a pattern .. 65
Ranges of lines ... 65
Find and replace with sed ... 66

Bash Guide for Beginners

v

Non-interactive editing ... 67
Reading sed commands from a file ... 67
Writing output files .. 68

Summary .. 69
Exercises .. 69

6. The GNU awk programming language .. 71
Getting started with gawk ... 71

What is gawk? .. 71
Gawk commands ... 71

The print program ... 72
Printing selected fields ... 72
Formatting fields ... 73
The print command and regular expressions ... 74
Special patterns ... 75
Gawk scripts ... 75

Gawk variables ... 76
The input field separator ... 76
The output separators ... 77
The number of records ... 78
User defined variables .. 78
More examples .. 79
The printf program .. 79

Summary .. 79
Exercises .. 80

7. Conditional statements .. 82
Introduction to if ... 82

General .. 82
Simple applications of if ... 85

More advanced if usage .. 87
if/then/else constructs ... 87
if/then/elif/else constructs .. 91
Nested if statements ... 92
Boolean operations .. 92
Using the exit statement and if .. 93

Using case statements .. 95
Simplified conditions ... 95
Initscript example .. 96

Summary .. 97
Exercises .. 97

8. Writing interactive scripts ... 99
Displaying user messages ... 99

Interactive or not? ... 99
Using the echo built-in command ... 99

Catching user input .. 102
Using the read built-in command .. 102
Prompting for user input ... 103
Redirection and file descriptors .. 105
File input and output .. 107

Summary .. 112
Exercises .. 112

9. Repetitive tasks .. 114
The for loop ... 114

How does it work? ... 114
Examples .. 114

Bash Guide for Beginners

vi

The while loop .. 115
What is it? .. 115
Examples .. 116

The until loop ... 118
What is it? .. 118
Example ... 119

I/O redirection and loops ... 119
Input redirection .. 119
Output redirection .. 120

Break and continue .. 120
The break built-in .. 120
The continue built-in .. 122
Examples .. 122

Making menus with the select built-in ... 123
General .. 123
Submenus ... 125

The shift built-in .. 125
What does it do? ... 125
Examples .. 125

Summary .. 126
Exercises .. 127

10. More on variables ... 128
Types of variables .. 128

General assignment of values ... 128
Using the declare built-in .. 128
Constants .. 129

Array variables .. 130
Creating arrays .. 130
Dereferencing the variables in an array .. 130
Deleting array variables .. 131
Examples of arrays .. 131

Operations on variables ... 133
Arithmetic on variables ... 133
Length of a variable ... 133
Transformations of variables .. 134

Summary .. 137
Exercises .. 137

11. Functions .. 138
Introduction .. 138

What are functions? ... 138
Function syntax ... 138
Positional parameters in functions ... 138
Displaying functions ... 140

Examples of functions in scripts ... 140
Recycling ... 140
Setting the path ... 140
Remote backups .. 141

Summary .. 143
Exercises .. 143

12. Catching signals ... 144
Signals ... 144

Introduction .. 144
Usage of signals with kill .. 145

Traps ... 146

Bash Guide for Beginners

vii

General .. 146
How Bash interprets traps ... 146
More examples .. 147

Summary .. 147
Exercises .. 147

A. Shell Features ... 149
Common features ... 149
Differing features ... 150

Glossary ... 153
Index ... 162

viii

List of Figures
1. Bash Guide for Beginners front cover .. xi
2.1. script1.sh ... 18
3.1. Different prompts for different users ... 31
6.1. Fields in awk .. 72
7.1. Testing of a command line argument with if .. 89
7.2. Example using Boolean operators ... 93

ix

List of Tables
1. Typographic and usage conventions ... xiii
1.1. Overview of programming terms .. 11
2.1. Overview of set debugging options ... 23
3.1. Reserved Bourne shell variables ... 36
3.2. Reserved Bash variables ... 37
3.3. Special bash variables .. 40
3.4. Arithmetic operators .. 48
4.1. Regular expression operators ... 56
5.1. Sed editing commands ... 63
5.2. Sed options .. 64
6.1. Formatting characters for gawk .. 74
7.1. Primary expressions ... 82
7.2. Combining expressions ... 84
8.1. Escape sequences used by the echo command ... 101
8.2. Options to the read built-in ... 102
10.1. Options to the declare built-in .. 128
12.1. Control signals in Bash ... 144
12.2. Common kill signals ... 145
A.1. Common Shell Features ... 149
A.2. Differing Shell Features ... 150

x

Introduction

Why this guide?
The primary reason for writing this document is that a lot of readers feel the existing HOWTO [http://
tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html] to be too short and incomplete, while the Bash Script-
ing [http://tldp.org/LDP/abs/html/] guide is too much of a reference work. There is nothing in between
these two extremes. I also wrote this guide on the general principle that not enough free basic courses are
available, though they should be.

This is a practical guide which, while not always being too serious, tries to give real-life instead of theoreti-
cal examples. I partly wrote it because I don't get excited with stripped down and over-simplified examples
written by people who know what they are talking about, showing some really cool Bash feature so much
out of its context that you cannot ever use it in practical circumstances. You can read that sort of stuff after
finishing this book, which contains exercises and examples that will help you survive in the real world.

From my experience as UNIX/Linux user, system administrator and trainer, I know that people can have
years of daily interaction with their systems, without having the slightest knowledge of task automation.
Thus they often think that UNIX is not user-friendly, and even worse, they get the impression that it is
slow and old-fashioned. This problem is another one that can be remedied by this guide.

Who should read this book?
Everybody working on a UNIX or UNIX-like system who wants to make life easier on themselves, power
users and sysadmins alike, can benefit from reading this book. Readers who already have a grasp of work-
ing the system using the command line will learn the ins and outs of shell scripting that ease execution of
daily tasks. System administration relies a great deal on shell scripting; common tasks are often automated
using simple scripts. This document is full of examples that will encourage you to write your own and that
will inspire you to improve on existing scripts.

Prerequisites/not in this course:

• You should be an experienced UNIX or Linux user, familiar with basic commands, man pages and
documentation

• Being able to use a text editor

• Understand system boot and shutdown processes, init and initscripts

• Create users and groups, set passwords

• Permissions, special modes

• Understand naming conventions for devices, partitioning, mounting/unmounting file systems

• Adding/removing software on your system

See Introduction to Linux [http://tldp.org/LDP/intro-linux/html/] (or your local TLDP mirror [http://
www.tldp.org/mirrors.html]) if you haven't mastered one or more of these topics. Additional information
can be found in your system documentation (man and info pages), or at the Linux Documentation Project
[http://tldp.org].

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
http://www.tldp.org/mirrors.html
http://www.tldp.org/mirrors.html
http://www.tldp.org/mirrors.html
http://tldp.org
http://tldp.org

Introduction

xi

New versions, translations and availability
The most recent edition can be found at http://tille.garrels.be/training/bash/. You should find the same
version at http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html.

This guide is available in print from Fultus.com [http://store.fultus.com/product_info.php?
products_id=66].

Figure 1. Bash Guide for Beginners front cover

This guide has been translated:

• Chinese translation at http://xiaowang.net/bgb-cn/, by Wang Wei.

• Ukrainian translation at http://docs.linux.org.ua/index.php/LDP:Bash_beginners_guide, by Yaroslav
Fedevych and his team.

A french translation is in the making and will be linked to as soon as it is finished.

Revision History
Revision History
Revision 1.11 2008-12-27 MG
Processed input from readers.
Revision 1.10 2008-06-06 MG
address change
Revision 1.9 2006-10-10 MG
Incorporated reader remarks, added index using DocBook tags.
Revision 1.8 2006-03-15 MG
clarified example in Chap4, corrected here doc in chap9, general checks and correction of typos, added
link to Chinese and Ukrainian translation, note and stuff to know about awk in chap6.

http://tille.garrels.be/training/bash/
http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://store.fultus.com/product_info.php?products_id=66
http://store.fultus.com/product_info.php?products_id=66
http://store.fultus.com/product_info.php?products_id=66
http://xiaowang.net/bgb-cn/
http://docs.linux.org.ua/index.php/LDP:Bash_beginners_guide

Introduction

xii

Revision 1.7 2005-09-05 MG
Corrected typos in chapter 3, 6 and 7, incorporated user remarks, added a note in chap7.
Revision 1.6 2005-03-01 MG
Minor debugging, added more keywords, info about new Bash 3.0, took out blank image.
Revision 1.0 2004-04-27 TM
Initial release for LDP; more exercises, more markup, less errors and abuse; added glossary.
Revision 1.0-beta 2003-04-20 MG
Pre-release

Contributions
Thanks to all the friends who helped (or tried to) and to my husband; your encouraging words made this
work possible. Thanks to all the people who submitted bug reports, examples and remarks - among many,
many others:

• Hans Bol, one of the groupies

• Mike Sim, remarks on style

• Dan Richter, for array examples

• Gerg Ferguson, for ideas on the title

• Mendel Leo Cooper, for making room

• #linux.be, for keeping my feet on the ground

• Frank Wang, for his detailed remarks on all the things I did wrong ;-)

Special thanks to Tabatha Marshall, who volunteered to do a complete review and spell and grammar
check. We make a great team: she works when I sleep. And vice versa ;-)

Feedback
Missing information, missing links, missing characters, remarks? Mail it to

<tille wants no spam _at_ garrels dot be>

the maintainer of this document.

Copyright information

* Copyright (c) 2002-2007, Machtelt Garrels
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.

Introduction

xiii

* * Neither the name of the author, Machtelt Garrels, nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is offered without warranty, either
express or implied. Neither the author nor the publisher nor any dealer or distributor will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

The logos, trademarks and symbols used in this book are the properties of their respective owners.

What do you need?
bash, available from http://www.gnu.org/directory/GNU/. The Bash shell is available on nearly every
Linux system, and can these days be found on a wide variety of UNIX systems.

Compiles easily if you need to make your own, tested on a wide variety of UNIX, Linux, MS Windows
and other systems.

Conventions used in this document
The following typographic and usage conventions occur in this text:

Table 1. Typographic and usage conventions

Text type Meaning

“Quoted text” Quotes from people, quoted computer output.

terminal view Literal computer input and output captured from
the terminal, usually rendered with a light grey
background.

command Name of a command that can be entered on the
command line.

VARIABLE Name of a variable or pointer to content of a vari-
able, as in $VARNAME.

option Option to a command, as in “the -a option to the
ls command”.

argument Argument to a command, as in “read man ls”.

command options arguments Command synopsis or general usage, on a separat-
ed line.

http://www.gnu.org/directory/GNU/

Introduction

xiv

Text type Meaning

filename Name of a file or directory, for example “Change
to the /usr/bin directory.”

Key Keys to hit on the keyboard, such as “type Q to
quit”.

Button Graphical button to click, like the OK button.

Menu → Choice Choice to select from a graphical menu, for in-

stance: “Select Help → About Mozilla in your
browser.”

Terminology Important term or concept: “The Linux kernel is
the heart of the system.”

\ The backslash in a terminal view or command syn-
opsis indicates an unfinished line. In other words,
if you see a long command that is cut into multiple
lines, \ means “Don't press Enter yet!”

See Chapter 1, Bash and Bash scripts link to related subject within this guide.

The author [http://tille.garrels.be] Clickable link to an external web resource.

Organization of this document
This guide discusses concepts useful in the daily life of the serious Bash user. While a basic knowledge
of the usage of the shell is required, we start with a discussion of the basic shell components and practices
in the first three chapters.

Chapters four to six are discussions of basic tools that are commonly used in shell scripts.

Chapters eight to twelve discuss the most common constructs in shell scripts.

All chapters come with exercises that will test your preparedness for the next chapter.

• Chapter 1, Bash and Bash scripts: Bash basics: why Bash is so good, building blocks, first guidelines
on developing good scripts.

• Chapter 2, Writing and debugging scripts: Script basics: writing and debugging.

• Chapter 3, The Bash environment: The Bash Environment: initialization files, variables, quoting char-
acters, shell expansion order, aliases, options.

• Chapter 4, Regular expressions: Regular expressions: an introduction.

• Chapter 5, The GNU sed stream editor: Sed: an introduction to the sed line editor.

• Chapter 6, The GNU awk programming language:Awk: introduction to the awk programming language.

• Chapter 7, Conditional statements: Conditional statements: constructs used in Bash to test conditions.

• Chapter 8, Writing interactive scripts: Interactive scripts: making scripts user-friendly, catching user
input.

• Chapter 9, Repetitive tasks: Executing commands repetitively: constructs used in Bash to automate
command execution.

http://tille.garrels.be
http://tille.garrels.be

Introduction

xv

• Chapter 10, More on variables: Advanced variables: specifying variable types, introduction to arrays
of variables, operations on variables.

• Chapter 11, Functions: Functions: an introduction.

• Chapter 12, Catching signals: Catching signals: introduction to process signalling, trapping user-sent
signals.

1

Chapter 1. Bash and Bash scripts
In this introduction module we

• Describe some common shells

• Point out GNU Bash advantages and features

• Describe the shell's building blocks

• Discuss Bash initialization files

• See how the shell executes commands

• Look into some simple script examples

Common shell programs
General shell functions

The UNIX shell program interprets user commands, which are either directly entered by the user, or which
can be read from a file called the shell script or shell program. Shell scripts are interpreted, not compiled.
The shell reads commands from the script line per line and searches for those commands on the system
(see the section called “Advantages of the Bourne Again SHell”), while a compiler converts a program
into machine readable form, an executable file - which may then be used in a shell script.

Apart from passing commands to the kernel, the main task of a shell is providing a user environment,
which can be configured individually using shell resource configuration files.

Shell types
Just like people know different languages and dialects, your UNIX system will usually offer a variety of
shell types:

• sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX-related environments.
This is the basic shell, a small program with few features. While this is not the standard shell, it is still
available on every Linux system for compatibility with UNIX programs.

• bash or Bourne Again shell: the standard GNU shell, intuitive and flexible. Probably most advisable
for beginning users while being at the same time a powerful tool for the advanced and professional
user. On Linux, bash is the standard shell for common users. This shell is a so-called superset of the
Bourne shell, a set of add-ons and plug-ins. This means that the Bourne Again shell is compatible with
the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not always the
case. All examples and exercises in this book use bash.

• csh or C shell: the syntax of this shell resembles that of the C programming language. Sometimes asked
for by programmers.

• tcsh or TENEX C shell: a superset of the common C shell, enhancing user-friendliness and speed. That
is why some also call it the Turbo C shell.

• ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the
Bourne shell; with standard configuration a nightmare for beginning users.

The file /etc/shells gives an overview of known shells on a Linux system:

Bash and Bash scripts

2

mia:~> cat /etc/shells
/bin/bash
/bin/sh
/bin/tcsh
/bin/csh

Your default shell is set in the /etc/passwd file, like this line for user mia:

mia:L2NOfqdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active terminal. The system
finds the directory where the name occurs using the PATH settings, and since a shell is an executable file
(program), the current shell activates it and it gets executed. A new prompt is usually shown, because each
shell has its typical appearance:

mia:~> tcsh
[mia@post21 ~]$

Advantages of the Bourne Again SHell

Bash is the GNU shell
The GNU project (GNU's Not UNIX) provides tools for UNIX-like system administration which are free
software and comply to UNIX standards.

Bash is an sh-compatible shell that incorporates useful features from the Korn shell (ksh) and C shell
(csh). It is intended to conform to the IEEE POSIX P1003.2/ISO 9945.2 Shell and Tools standard. It
offers functional improvements over sh for both programming and interactive use; these include command
line editing, unlimited size command history, job control, shell functions and aliases, indexed arrays of
unlimited size, and integer arithmetic in any base from two to sixty-four. Bash can run most sh scripts
without modification.

Like the other GNU projects, the bash initiative was started to preserve, protect and promote the freedom
to use, study, copy, modify and redistribute software. It is generally known that such conditions stimulate
creativity. This was also the case with the bash program, which has a lot of extra features that other shells
can't offer.

Features only found in bash

Invocation

In addition to the single-character shell command line options which can generally be configured using
the set shell built-in command, there are several multi-character options that you can use. We will come
across a couple of the more popular options in this and the following chapters; the complete list can be

found in the Bash info pages, Bash features → Invoking Bash.

Bash startup files

Startup files are scripts that are read and executed by Bash when it starts. The following subsections
describe different ways to start the shell, and the startup files that are read consequently.

Bash and Bash scripts

3

Invoked as an interactive login shell, or with `--login'

Interactive means you can enter commands. The shell is not running because a script has been activated.
A login shell means that you got the shell after authenticating to the system, usually by giving your user
name and password.

Files read:

• /etc/profile

• ~/.bash_profile, ~/.bash_login or ~/.profile: first existing readable file is read

• ~/.bash_logout upon logout.

Error messages are printed if configuration files exist but are not readable. If a file does not exist, bash
searches for the next.

Invoked as an interactive non-login shell

A non-login shell means that you did not have to authenticate to the system. For instance, when you open
a terminal using an icon, or a menu item, that is a non-login shell.

Files read:

• ~/.bashrc

This file is usually referred to in ~/.bash_profile:

if [-f ~/.bashrc]; then . ~/.bashrc; fi

See Chapter 7, Conditional statements for more information on the if construct.

Invoked non-interactively

All scripts use non-interactive shells. They are programmed to do certain tasks and cannot be instructed
to do other jobs than those for which they are programmed.

Files read:

• defined by BASH_ENV

PATH is not used to search for this file, so if you want to use it, best refer to it by giving the full path
and file name.

Invoked with the sh command

Bash tries to behave as the historical Bourne sh program while conforming to the POSIX standard as well.

Files read:

• /etc/profile

• ~/.profile

When invoked interactively, the ENV variable can point to extra startup information.

POSIX mode

This option is enabled either using the set built-in:

Bash and Bash scripts

4

set -o posix

or by calling the bash program with the --posix option. Bash will then try to behave as compliant as
possible to the POSIX standard for shells. Setting the POSIXLY_CORRECT variable does the same.

Files read:

• defined by ENV variable.

Invoked remotely

Files read when invoked by rshd:

• ~/.bashrc

Avoid use of r-tools

Be aware of the dangers when using tools such as rlogin, telnet, rsh and rcp. They are intrinsi-
cally insecure because confidential data is sent over the network unencrypted. If you need tools
for remote execution, file transfer and so on, use an implementation of Secure SHell, general-
ly known as SSH, freely available from http://www.openssh.org. Different client programs are
available for non-UNIX systems as well, see your local software mirror.

Invoked when UID is not equal to EUID

No startup files are read in this case.

Interactive shells

What is an interactive shell?

An interactive shell generally reads from, and writes to, a user's terminal: input and output are connected
to a terminal. Bash interactive behavior is started when the bash command is called upon without non-
option arguments, except when the option is a string to read from or when the shell is invoked to read from
standard input, which allows for positional parameters to be set (see Chapter 3, The Bash environment).

Is this shell interactive?

Test by looking at the content of the special parameter -, it contains an 'i' when the shell is interactive:

eddy:~> echo $-
himBH

In non-interactive shells, the prompt, PS1, is unset.

Interactive shell behavior

Differences in interactive mode:

• Bash reads startup files.

• Job control enabled by default.

• Prompts are set, PS2 is enabled for multi-line commands, it is usually set to “>”. This is also the prompt
you get when the shell thinks you entered an unfinished command, for instance when you forget quotes,
command structures that cannot be left out, etc.

http://www.openssh.org

Bash and Bash scripts

5

• Commands are by default read from the command line using readline.

• Bash interprets the shell option ignoreeof instead of exiting immediately upon receiving EOF (End
Of File).

• Command history and history expansion are enabled by default. History is saved in the file pointed to
by HISTFILE when the shell exits. By default, HISTFILE points to ~/.bash_history.

• Alias expansion is enabled.

• In the absence of traps, the SIGTERM signal is ignored.

• In the absence of traps, SIGINT is caught and handled. Thus, typing Ctrl+C, for example, will not
quit your interactive shell.

• Sending SIGHUP signals to all jobs on exit is configured with the huponexit option.

• Commands are executed upon read.

• Bash checks for mail periodically.

• Bash can be configured to exit when it encounters unreferenced variables. In interactive mode this
behavior is disabled.

• When shell built-in commands encounter redirection errors, this will not cause the shell to exit.

• Special built-ins returning errors when used in POSIX mode don't cause the shell to exit. The built-in
commands are listed in the section called “Shell built-in commands”.

• Failure of exec will not exit the shell.

• Parser syntax errors don't cause the shell to exit.

• Simple spell check for the arguments to the cd built-in is enabled by default.

• Automatic exit after the length of time specified in the TMOUT variable has passed, is enabled.

More information:

• the section called “Variables”

• the section called “More Bash options”

• See Chapter 12, Catching signals for more about signals.

• the section called “Shell expansion” discusses the various expansions performed upon entering a com-
mand.

Conditionals

Conditional expressions are used by the [[compound command and by the test and [built-in commands.

Expressions may be unary or binary. Unary expressions are often used to examine the status of a file. You
only need one object, for instance a file, to do the operation on.

There are string operators and numeric comparison operators as well; these are binary operators, requiring
two objects to do the operation on. If the FILE argument to one of the primaries is in the form /dev/
fd/N, then file descriptor N is checked. If the FILE argument to one of the primaries is one of /dev/
stdin, /dev/stdout or /dev/stderr, then file descriptor 0, 1 or 2 respectively is checked.

Bash and Bash scripts

6

Conditionals are discussed in detail in Chapter 7, Conditional statements.

More information about the file descriptors in the section called “Redirection and file descriptors”.

Shell arithmetic

The shell allows arithmetic expressions to be evaluated, as one of the shell expansions or by the let built-in.

Evaluation is done in fixed-width integers with no check for overflow, though division by 0 is trapped and
flagged as an error. The operators and their precedence and associativity are the same as in the C language,
see Chapter 3, The Bash environment.

Aliases

Aliases allow a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset with the alias and unalias commands.

Bash always reads at least one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input is read.
The commands following the alias definition on that line are not affected by the new alias.

Aliases are expanded when a function definition is read, not when the function is executed, because a
function definition is itself a compound command. As a consequence, aliases defined in a function are not
available until after that function is executed.

We will discuss aliases in detail in the section called “Aliases”.

Arrays

Bash provides one-dimensional array variables. Any variable may be used as an array; the declare built-in
will explicitly declare an array. There is no maximum limit on the size of an array, nor any requirement that
members be indexed or assigned contiguously. Arrays are zero-based. See Chapter 10, More on variables.

Directory stack

The directory stack is a list of recently-visited directories. The pushd built-in adds directories to the stack
as it changes the current directory, and the popd built-in removes specified directories from the stack and
changes the current directory to the directory removed.

Content can be displayed issuing the dirs command or by checking the content of the DIRSTACK variable.

More information about the workings of this mechanism can be found in the Bash info pages.

The prompt

Bash makes playing with the prompt even more fun. See the section Controlling the Prompt in the Bash
info pages.

The restricted shell

When invoked as rbash or with the --restricted or -r option, the following happens:

• The cd built-in is disabled.

• Setting or unsetting SHELL, PATH, ENV or BASH_ENV is not possible.

Bash and Bash scripts

7

• Command names can no longer contain slashes.

• Filenames containing a slash are not allowed with the . (source) built-in command.

• The hash built-in does not accept slashes with the -p option.

• Import of functions at startup is disabled.

• SHELLOPTS is ignored at startup.

• Output redirection using >, >|, ><, >&, &> and >> is disabled.

• The exec built-in is disabled.

• The -f and -d options are disabled for the enable built-in.

• A default PATH cannot be specified with the command built-in.

• Turning off restricted mode is not possible.

When a command that is found to be a shell script is executed, rbash turns off any restrictions in the shell
spawned to execute the script.

More information:

• the section called “Variables”

• the section called “More Bash options”

• Info Bash → Basic Shell Features → Redirections

• the section called “Redirection and file descriptors”: advanced redirection

Executing commands

General
Bash determines the type of program that is to be executed. Normal programs are system commands that
exist in compiled form on your system. When such a program is executed, a new process is created because
Bash makes an exact copy of itself. This child process has the same environment as its parent, only the
process ID number is different. This procedure is called forking.

After the forking process, the address space of the child process is overwritten with the new process data.
This is done through an exec call to the system.

The fork-and-exec mechanism thus switches an old command with a new, while the environment in which
the new program is executed remains the same, including configuration of input and output devices, en-
vironment variables and priority. This mechanism is used to create all UNIX processes, so it also applies
to the Linux operating system. Even the first process, init, with process ID 1, is forked during the boot
procedure in the so-called bootstrapping procedure.

Shell built-in commands
Built-in commands are contained within the shell itself. When the name of a built-in command is used
as the first word of a simple command, the shell executes the command directly, without creating a new

Bash and Bash scripts

8

process. Built-in commands are necessary to implement functionality impossible or inconvenient to obtain
with separate utilities.

Bash supports 3 types of built-in commands:

• Bourne Shell built-ins:

:, ., break, cd, continue, eval, exec, exit, export, getopts, hash, pwd, readonly, return, set, shift,
test, [, times, trap, umask and unset.

• Bash built-in commands:

alias, bind, builtin, command, declare, echo, enable, help, let, local, logout, printf, read, shopt,
type, typeset, ulimit and unalias.

• Special built-in commands:

When Bash is executing in POSIX mode, the special built-ins differ from other built-in commands in
three respects:

1. Special built-ins are found before shell functions during command lookup.

2. If a special built-in returns an error status, a non-interactive shell exits.

3. Assignment statements preceding the command stay in effect in the shell environment after the com-
mand completes.

The POSIX special built-ins are :, ., break, continue, eval, exec, exit, export, readonly, return, set,
shift, trap and unset.

Most of these built-ins will be discussed in the next chapters. For those commands for which this is not
the case, we refer to the Info pages.

Executing programs from a script
When the program being executed is a shell script, bash will create a new bash process using a fork. This
subshell reads the lines from the shell script one line at a time. Commands on each line are read, interpreted
and executed as if they would have come directly from the keyboard.

While the subshell processes each line of the script, the parent shell waits for its child process to finish.
When there are no more lines in the shell script to read, the subshell terminates. The parent shell awakes
and displays a new prompt.

Building blocks

Shell building blocks

Shell syntax

If input is not commented, the shell reads it and divides it into words and operators, employing quoting
rules to define the meaning of each character of input. Then these words and operators are translated into
commands and other constructs, which return an exit status available for inspection or processing. The
above fork-and-exec scheme is only applied after the shell has analyzed input in the following way:

• The shell reads its input from a file, from a string or from the user's terminal.

Bash and Bash scripts

9

• Input is broken up into words and operators, obeying the quoting rules, see Chapter 3, The Bash envi-
ronment. These tokens are separated by metacharacters. Alias expansion is performed.

• The shell parses (analyzes and substitutes) the tokens into simple and compound commands.

• Bash performs various shell expansions, breaking the expanded tokens into lists of filenames and com-
mands and arguments.

• Redirection is performed if necessary, redirection operators and their operands are removed from the
argument list.

• Commands are executed.

• Optionally the shell waits for the command to complete and collects its exit status.

Shell commands

A simple shell command such as touch file1 file2 file3 consists of the command itself followed
by arguments, separated by spaces.

More complex shell commands are composed of simple commands arranged together in a variety of ways:
in a pipeline in which the output of one command becomes the input of a second, in a loop or conditional
construct, or in some other grouping. A couple of examples:

ls | more

gunzip file.tar.gz | tar xvf -

Shell functions

Shell functions are a way to group commands for later execution using a single name for the group. They
are executed just like a “regular” command. When the name of a shell function is used as a simple command
name, the list of commands associated with that function name is executed.

Shell functions are executed in the current shell context; no new process is created to interpret them.

Functions are explained in Chapter 11, Functions.

Shell parameters

A parameter is an entity that stores values. It can be a name, a number or a special value. For the shell's
purpose, a variable is a parameter that stores a name. A variable has a value and zero or more attributes.
Variables are created with the declare shell built-in command.

If no value is given, a variable is assigned the null string. Variables can only be removed with the unset
built-in.

Assigning variables is discussed in the section called “Variables”, advanced use of variables in Chapter 10,
More on variables.

Shell expansions

Shell expansion is performed after each command line has been split into tokens. These are the expansions
performed:

Bash and Bash scripts

10

• Brace expansion

• Tilde expansion

• Parameter and variable expansion

• Command substitution

• Arithmetic expansion

• Word splitting

• Filename expansion

We'll discuss these expansion types in detail in the section called “Shell expansion”.

Redirections

Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. Redirection may also be used to open and close files for the current shell execution environ-
ment.

Executing commands

When executing a command, the words that the parser has marked as variable assignments (preceding the
command name) and redirections are saved for later reference. Words that are not variable assignments or
redirections are expanded; the first remaining word after expansion is taken to be the name of the command
and the rest are arguments to that command. Then redirections are performed, then strings assigned to
variables are expanded. If no command name results, variables will affect the current shell environment.

An important part of the tasks of the shell is to search for commands. Bash does this as follows:

• Check whether the command contains slashes. If not, first check with the function list to see if it contains
a command by the name we are looking for.

• If command is not a function, check for it in the built-in list.

• If command is neither a function nor a built-in, look for it analyzing the directories listed in PATH.
Bash uses a hash table (data storage area in memory) to remember the full path names of executables
so extensive PATH searches can be avoided.

• If the search is unsuccessful, bash prints an error message and returns an exit status of 127.

• If the search was successful or if the command contains slashes, the shell executes the command in a
separate execution environment.

• If execution fails because the file is not executable and not a directory, it is assumed to be a shell script.

• If the command was not begun asynchronously, the shell waits for the command to complete and collects
its exit status.

Shell scripts

When a file containing shell commands is used as the first non-option argument when invoking Bash
(without -c or -s, this will create a non-interactive shell. This shell first searches for the script file in the
current directory, then looks in PATH if the file cannot be found there.

Bash and Bash scripts

11

Developing good scripts

Properties of good scripts
This guide is mainly about the last shell building block, scripts. Some general considerations before we
continue:

1. A script should run without errors.

2. It should perform the task for which it is intended.

3. Program logic is clearly defined and apparent.

4. A script does not do unnecessary work.

5. Scripts should be reusable.

Structure
The structure of a shell script is very flexible. Even though in Bash a lot of freedom is granted, you must
ensure correct logic, flow control and efficiency so that users executing the script can do so easily and
correctly.

When starting on a new script, ask yourself the following questions:

• Will I be needing any information from the user or from the user's environment?

• How will I store that information?

• Are there any files that need to be created? Where and with which permissions and ownerships?

• What commands will I use? When using the script on different systems, do all these systems have these
commands in the required versions?

• Does the user need any notifications? When and why?

Terminology
The table below gives an overview of programming terms that you need to be familiar with:

Table 1.1. Overview of programming terms

Term What is it?

Command control Testing exit status of a command in order to deter-
mine whether a portion of the program should be
executed.

Conditional branch Logical point in the program when a condition de-
termines what happens next.

Logic flow The overall design of the program. Determines
logical sequence of tasks so that the result is suc-
cessful and controlled.

Loop Part of the program that is performed zero or more
times.

Bash and Bash scripts

12

Term What is it?

User input Information provided by an external source while
the program is running, can be stored and recalled
when needed.

A word on order and logic
In order to speed up the developing process, the logical order of a program should be thought over in
advance. This is your first step when developing a script.

A number of methods can be used; one of the most common is working with lists. Itemizing the list of
tasks involved in a program allows you to describe each process. Individual tasks can be referenced by
their item number.

Using your own spoken language to pin down the tasks to be executed by your program will help you to
create an understandable form of your program. Later, you can replace the everyday language statements
with shell language words and constructs.

The example below shows such a logic flow design. It describes the rotation of log files. This example
shows a possible repetitive loop, controlled by the number of base log files you want to rotate:

1. Do you want to rotate logs?

a. If yes:

i. Enter directory name containing the logs to be rotated.

ii. Enter base name of the log file.

iii.Enter number of days logs should be kept.

iv. Make settings permanent in user's crontab file.

b. If no, go to step 3.

2. Do you want to rotate another set of logs?

a. If yes: repeat step 1.

b. If no: go to step 3.

3. Exit

The user should provide information for the program to do something. Input from the user must be obtained
and stored. The user should be notified that his crontab will change.

An example Bash script: mysystem.sh
The mysystem.sh script below executes some well-known commands (date, w, uname, uptime) to
display information about you and your machine.

tom:~> cat -n mysystem.sh
 1 #!/bin/bash
 2 clear

Bash and Bash scripts

13

 3 echo "This is information provided by mysystem.sh. Program starts now."
 4
 5 echo "Hello, $USER"
 6 echo
 7
 8 echo "Today's date is `date`, this is week `date +"%V"`."
 9 echo
 10
 11 echo "These users are currently connected:"
 12 w | cut -d " " -f 1 - | grep -v USER | sort -u
 13 echo
 14
 15 echo "This is `uname -s` running on a `uname -m` processor."
 16 echo
 17
 18 echo "This is the uptime information:"
 19 uptime
 20 echo
 21
 22 echo "That's all folks!"

A script always starts with the same two characters, “#!”. After that, the shell that will execute the com-
mands following the first line is defined. This script starts with clearing the screen on line 2. Line 3 makes
it print a message, informing the user about what is going to happen. Line 5 greets the user. Lines 6, 9,
13, 16 and 20 are only there for orderly output display purposes. Line 8 prints the current date and the
number of the week. Line 11 is again an informative message, like lines 3, 18 and 22. Line 12 formats
the output of the w; line 15 shows operating system and CPU information. Line 19 gives the uptime and
load information.

Both echo and printf are Bash built-in commands. The first always exits with a 0 status, and simply prints
arguments followed by an end of line character on the standard output, while the latter allows for definition
of a formatting string and gives a non-zero exit status code upon failure.

This is the same script using the printf built-in:

tom:~> cat mysystem.sh
#!/bin/bash
clear
printf "This is information provided by mysystem.sh. Program starts now.\n"

printf "Hello, $USER.\n\n"

printf "Today's date is `date`, this is week `date +"%V"`.\n\n"

printf "These users are currently connected:\n"
w | cut -d " " -f 1 - | grep -v USER | sort -u
printf "\n"

printf "This is `uname -s` running on a `uname -m` processor.\n\n"

printf "This is the uptime information:\n"
uptime
printf "\n"

Bash and Bash scripts

14

printf "That's all folks!\n"

Creating user friendly scripts by means of inserting messages is treated in Chapter 8, Writing interactive
scripts.

Standard location of the Bourne Again shell

This implies that the bash program is installed in /bin.

If stdout is not available

If you execute a script from cron, supply full path names and redirect output and errors. Since
the shell runs in non-interactive mode, any errors will cause the script to exit prematurely if you
don't think about this.

The following chapters will discuss the details of the above scripts.

Example init script
An init script starts system services on UNIX and Linux machines. The system log daemon, the power
management daemon, the name and mail daemons are common examples. These scripts, also known as
startup scripts, are stored in a specific location on your system, such as /etc/rc.d/init.d or /etc/
init.d. Init, the initial process, reads its configuration files and decides which services to start or stop
in each run level. A run level is a configuration of processes; each system has a single user run level, for
instance, for performing administrative tasks, for which the system has to be in an unused state as much
as possible, such as recovering a critical file system from a backup. Reboot and shutdown run levels are
usually also configured.

The tasks to be executed upon starting a service or stopping it are listed in the startup scripts. It is one of
the system administrator's tasks to configure init, so that services are started and stopped at the correct
moment. When confronted with this task, you need a good understanding of the startup and shutdown
procedures on your system. We therefore advise that you read the man pages for init and inittab before
starting on your own initialization scripts.

Here is a very simple example, that will play a sound upon starting and stopping your machine:

#!/bin/bash

This script is for /etc/rc.d/init.d
Link in rc3.d/S99audio-greeting and rc0.d/K01audio-greeting

case "$1" in
'start')
 cat /usr/share/audio/at_your_service.au > /dev/audio
 ;;
'stop')
 cat /usr/share/audio/oh_no_not_again.au > /dev/audio
 ;;
esac
exit 0

The case statement often used in this kind of script is described in the section called “Using the exit
statement and if”.

Bash and Bash scripts

15

Summary
Bash is the GNU shell, compatible with the Bourne shell and incorporating many useful features from
other shells. When the shell is started, it reads its configuration files. The most important are:

• /etc/profile

• ~/.bash_profile

• ~/.bashrc

Bash behaves different when in interactive mode and also has a POSIX compliant and a restricted mode.

Shell commands can be split up in three groups: the shell functions, shell built-ins and existing commands
in a directory on your system. Bash supports additional built-ins not found in the plain Bourne shell.

Shell scripts consist of these commands arranged as shell syntax dictates. Scripts are read and executed
line per line and should have a logical structure.

Exercises
These are some exercises to warm you up for the next chapter:

1. Where is the bash program located on your system?

2. Use the --version option to find out which version you are running.

3. Which shell configuration files are read when you login to your system using the graphical user interface
and then opening a terminal window?

4. Are the following shells interactive shells? Are they login shells?

• A shell opened by clicking on the background of your graphical desktop, selecting “Terminal” or
such from a menu.

• A shell that you get after issuing the command ssh localhost.

• A shell that you get when logging in to the console in text mode.

• A shell obtained by the command xterm &.

• A shell opened by the mysystem.sh script.

• A shell that you get on a remote host, for which you didn't have to give the login and/or password
because you use SSH and maybe SSH keys.

5. Can you explain why bash does not exit when you type Ctrl+C on the command line?

6. Display directory stack content.

7. If it is not yet the case, set your prompt so that it displays your location in the file system hierarchy,
for instance add this line to ~/.bashrc:

export PS1="\u@\h \w> "

8. Display hashed commands for your current shell session.

Bash and Bash scripts

16

9. How many processes are currently running on your system? Use ps and wc, the first line of output of
ps is not a process!

10.How to display the system hostname? Only the name, nothing more!

17

Chapter 2. Writing and debugging
scripts
After going through this chapter, you will be able to:

• Write a simple script

• Define the shell type that should execute the script

• Put comments in a script

• Change permissions on a script

• Execute and debug a script

Creating and running a script
Writing and naming

A shell script is a sequence of commands for which you have a repeated use. This sequence is typically
executed by entering the name of the script on the command line. Alternatively, you can use scripts to
automate tasks using the cron facility. Another use for scripts is in the UNIX boot and shutdown procedure,
where operation of daemons and services are defined in init scripts.

To create a shell script, open a new empty file in your editor. Any text editor will do: vim, emacs, gedit,
dtpad et cetera are all valid. You might want to chose a more advanced editor like vim or emacs, however,
because these can be configured to recognize shell and Bash syntax and can be a great help in preventing
those errors that beginners frequently make, such as forgetting brackets and semi-colons.

Syntax highlighting in vim

In order to activate syntax highlighting in vim, use the command

:syntax enable

or

:sy enable

or

:syn enable

You can add this setting to your .vimrc file to make it permanent.

Put UNIX commands in the new empty file, like you would enter them on the command line. As discussed
in the previous chapter (see the section called “Executing commands”), commands can be shell functions,
shell built-ins, UNIX commands and other scripts.

Give your script a sensible name that gives a hint about what the script does. Make sure that your script
name does not conflict with existing commands. In order to ensure that no confusion can rise, script names
often end in .sh; even so, there might be other scripts on your system with the same name as the one you
chose. Check using which, whereis and other commands for finding information about programs and files:

which -a script_name

Writing and debugging scripts

18

whereis script_name

locate script_name

script1.sh
In this example we use the echo Bash built-in to inform the user about what is going to happen, before
the task that will create the output is executed. It is strongly advised to inform users about what a script is
doing, in order to prevent them from becoming nervous because the script is not doing anything. We will
return to the subject of notifying users in Chapter 8, Writing interactive scripts.

Figure 2.1. script1.sh

Writing and debugging scripts

19

Write this script for yourself as well. It might be a good idea to create a directory ~/scripts to hold
your scripts. Add the directory to the contents of the PATH variable:

export PATH="$PATH:~/scripts"

If you are just getting started with Bash, use a text editor that uses different colours for different shell
constructs. Syntax highlighting is supported by vim, gvim, (x)emacs, kwrite and many other editors;
check the documentation of your favorite editor.

Different prompts

The prompts throughout this course vary depending on the author's mood. This resembles much
more real life situations than the standard educational $ prompt. The only convention we stick
to, is that the root prompt ends in a hash mark (#).

Executing the script
The script should have execute permissions for the correct owners in order to be runnable. When setting
permissions, check that you really obtained the permissions that you want. When this is done, the script
can run like any other command:

willy:~/scripts> chmod u+x script1.sh

willy:~/scripts> ls -l script1.sh
-rwxrw-r-- 1 willy willy 456 Dec 24 17:11 script1.sh

willy:~> script1.sh
The script starts now.
Hi, willy!

I will now fetch you a list of connected users:

 3:38pm up 18 days, 5:37, 4 users, load average: 0.12, 0.22, 0.15
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 - Sat 2pm 4:25m 0.24s 0.05s -bash
willy :0 - Sat 2pm ? 0.00s ? -
willy pts/3 - Sat 2pm 3:33m 36.39s 36.39s BitchX willy ir
willy pts/2 - Sat 2pm 3:33m 0.13s 0.06s /usr/bin/screen

I'm setting two variables now.
This is a string: black
And this is a number: 9

I'm giving you back your prompt now.

willy:~/scripts> echo $COLOUR

willy:~/scripts> echo $VALUE

willy:~/scripts>

This is the most common way to execute a script. It is preferred to execute the script like this in a subshell.
The variables, functions and aliases created in this subshell are only known to the particular bash session of

Writing and debugging scripts

20

that subshell. When that shell exits and the parent regains control, everything is cleaned up and all changes
to the state of the shell made by the script, are forgotten.

If you did not put the scripts directory in your PATH, and . (the current directory) is not in the PATH
either, you can activate the script like this:

./script_name.sh

A script can also explicitly be executed by a given shell, but generally we only do this if we want to obtain
special behavior, such as checking if the script works with another shell or printing traces for debugging:

rbash script_name.sh

sh script_name.sh

bash -x script_name.sh

The specified shell will start as a subshell of your current shell and execute the script. This is done when
you want the script to start up with specific options or under specific conditions which are not specified
in the script.

If you don't want to start a new shell but execute the script in the current shell, you source it:

source script_name.sh

source = .

The Bash source built-in is a synonym for the Bourne shell . (dot) command.

The script does not need execute permission in this case. Commands are executed in the current shell
context, so any changes made to your environment will be visible when the script finishes execution:

willy:~/scripts> source script1.sh
--output ommitted--

willy:~/scripts> echo $VALUE
9

willy:~/scripts>

Script basics
Which shell will run the script?

When running a script in a subshell, you should define which shell should run the script. The shell type
in which you wrote the script might not be the default on your system, so commands you entered might
result in errors when executed by the wrong shell.

The first line of the script determines the shell to start. The first two characters of the first line should be
#!, then follows the path to the shell that should interpret the commands that follow. Blank lines are also
considered to be lines, so don't start your script with an empty line.

For the purpose of this course, all scripts will start with the line

#!/bin/bash

As noted before, this implies that the Bash executable can be found in /bin.

Writing and debugging scripts

21

Adding comments
You should be aware of the fact that you might not be the only person reading your code. A lot of users
and system administrators run scripts that were written by other people. If they want to see how you did
it, comments are useful to enlighten the reader.

Comments also make your own life easier. Say that you had to read a lot of man pages in order to achieve
a particular result with some command that you used in your script. You won't remember how it worked
if you need to change your script after a few weeks or months, unless you have commented what you did,
how you did it and/or why you did it.

Take the script1.sh example and copy it to commented-script1.sh, which we edit so that the
comments reflect what the script does. Everything the shell encounters after a hash mark on a line is ignored
and only visible upon opening the shell script file:

#!/bin/bash
This script clears the terminal, displays a greeting and gives information
about currently connected users. The two example variables are set and displayed.

clear # clear terminal window

echo "The script starts now."

echo "Hi, $USER!" # dollar sign is used to get content of variable
echo

echo "I will now fetch you a list of connected users:"
echo
w # show who is logged on and
echo # what they are doing

echo "I'm setting two variables now."
COLOUR="black" # set a local shell variable
VALUE="9" # set a local shell variable
echo "This is a string: $COLOUR" # display content of variable
echo "And this is a number: $VALUE" # display content of variable
echo

echo "I'm giving you back your prompt now."
echo

In a decent script, the first lines are usually comment about what to expect. Then each big chunk of com-
mands will be commented as needed for clarity's sake. Linux init scripts, as an example, in your system's
init.d directory, are usually well commented since they have to be readable and editable by everyone
running Linux.

Debugging Bash scripts

Debugging on the entire script
When things don't go according to plan, you need to determine what exactly causes the script to fail. Bash
provides extensive debugging features. The most common is to start up the subshell with the -x option,

Writing and debugging scripts

22

which will run the entire script in debug mode. Traces of each command plus its arguments are printed to
standard output after the commands have been expanded but before they are executed.

This is the commented-script1.sh script ran in debug mode. Note again that the added comments
are not visible in the output of the script.

willy:~/scripts> bash -x script1.sh
+ clear

+ echo 'The script starts now.'
The script starts now.
+ echo 'Hi, willy!'
Hi, willy!
+ echo

+ echo 'I will now fetch you a list of connected users:'
I will now fetch you a list of connected users:
+ echo

+ w
 4:50pm up 18 days, 6:49, 4 users, load average: 0.58, 0.62, 0.40
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 - Sat 2pm 5:36m 0.24s 0.05s -bash
willy :0 - Sat 2pm ? 0.00s ? -
willy pts/3 - Sat 2pm 43:13 36.82s 36.82s BitchX willy ir
willy pts/2 - Sat 2pm 43:13 0.13s 0.06s /usr/bin/screen
+ echo

+ echo 'I'\''m setting two variables now.'
I'm setting two variables now.
+ COLOUR=black
+ VALUE=9
+ echo 'This is a string: '
This is a string:
+ echo 'And this is a number: '
And this is a number:
+ echo

+ echo 'I'\''m giving you back your prompt now.'
I'm giving you back your prompt now.
+ echo

There is now a full-fledged debugger for Bash, available at SourceForge [http://bashdb.sourceforge.net].
These debugging features are available in most modern versions of Bash, starting from 3.x.

Debugging on part(s) of the script
Using the set Bash built-in you can run in normal mode those portions of the script of which you are sure
they are without fault, and display debugging information only for troublesome zones. Say we are not sure
what the w command will do in the example commented-script1.sh, then we could enclose it in
the script like this:

http://bashdb.sourceforge.net
http://bashdb.sourceforge.net

Writing and debugging scripts

23

set -x # activate debugging from here
w
set +x # stop debugging from here

Output then looks like this:

willy: ~/scripts> script1.sh
The script starts now.
Hi, willy!

I will now fetch you a list of connected users:

+ w
 5:00pm up 18 days, 7:00, 4 users, load average: 0.79, 0.39, 0.33
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
root tty2 - Sat 2pm 5:47m 0.24s 0.05s -bash
willy :0 - Sat 2pm ? 0.00s ? -
willy pts/3 - Sat 2pm 54:02 36.88s 36.88s BitchX willyke
willy pts/2 - Sat 2pm 54:02 0.13s 0.06s /usr/bin/screen
+ set +x

I'm setting two variables now.
This is a string:
And this is a number:

I'm giving you back your prompt now.

willy: ~/scripts>

You can switch debugging mode on and off as many times as you want within the same script.

The table below gives an overview of other useful Bash options:

Table 2.1. Overview of set debugging options

Short notation Long notation Result

set -f set -o noglob Disable file name generation us-
ing metacharacters (globbing).

set -v set -o verbose Prints shell input lines as they are
read.

set -x set -o xtrace Print command traces before exe-
cuting command.

The dash is used to activate a shell option and a plus to deactivate it. Don't let this confuse you!

In the example below, we demonstrate these options on the command line:

willy:~/scripts> set -v

willy:~/scripts> ls
ls

Writing and debugging scripts

24

commented-scripts.sh script1.sh

willy:~/scripts> set +v
set +v

willy:~/scripts> ls *
commented-scripts.sh script1.sh

willy:~/scripts> set -f

willy:~/scripts> ls *
ls: *: No such file or directory

willy:~/scripts> touch *

willy:~/scripts> ls
* commented-scripts.sh script1.sh

willy:~/scripts> rm *

willy:~/scripts> ls
commented-scripts.sh script1.sh

Alternatively, these modes can be specified in the script itself, by adding the desired options to the first
line shell declaration. Options can be combined, as is usually the case with UNIX commands:

#!/bin/bash -xv

Once you found the buggy part of your script, you can add echo statements before each command of
which you are unsure, so that you will see exactly where and why things don't work. In the example
commented-script1.sh script, it could be done like this, still assuming that the displaying of users
gives us problems:

echo "debug message: now attempting to start w command"; w

In more advanced scripts, the echo can be inserted to display the content of variables at different stages
in the script, so that flaws can be detected:

echo "Variable VARNAME is now set to $VARNAME."

Summary
A shell script is a reusable series of commands put in an executable text file. Any text editor can be used
to write scripts.

Scripts start with #! followed by the path to the shell executing the commands from the script. Comments
are added to a script for your own future reference, and also to make it understandable for other users. It
is better to have too many explanations than not enough.

Debugging a script can be done using shell options. Shell options can be used for partial debugging or for
analyzing the entire script. Inserting echo commands at strategic locations is also a common troubleshoot-
ing technique.

Writing and debugging scripts

25

Exercises
This exercise will help you to create your first script.

1. Write a script using your favorite editor. The script should display the path to your homedirectory and
the terminal type that you are using. Additionally it shows all the services started up in runlevel 3 on
your system. (hint: use HOME, TERM and ls /etc/rc3.d/S*)

2. Add comments in your script.

3. Add information for the users of your script.

4. Change permissions on your script so that you can run it.

5. Run the script in normal mode and in debug mode. It should run without errors.

6. Make errors in your script: see what happens if you misspell commands, if you leave out the first line or
put something unintelligible there, or if you misspell shell variable names or write them in lower case
characters after they have been declared in capitals. Check what the debug comments say about this.

26

Chapter 3. The Bash environment
In this chapter we will discuss the various ways in which the Bash environment can be influenced:

• Editing shell initialization files

• Using variables

• Using different quote styles

• Perform arithmetic calculations

• Assigning aliases

• Using expansion and substitution

Shell initialization files

System-wide configuration files

/etc/profile

When invoked interactively with the --login option or when invoked as sh, Bash reads the /etc/pro-
file instructions. These usually set the shell variables PATH, USER, MAIL, HOSTNAME and HISTSIZE.

On some systems, the umask value is configured in /etc/profile; on other systems this file holds
pointers to other configuration files such as:

• /etc/inputrc, the system-wide Readline initialization file where you can configure the command
line bell-style.

• the /etc/profile.d directory, which contains files configuring system-wide behavior of specific
programs.

All settings that you want to apply to all your users' environments should be in this file. It might look
like this:

/etc/profile

System wide environment and startup programs, for login setup

PATH=$PATH:/usr/X11R6/bin

No core files by default
ulimit -S -c 0 > /dev/null 2>&1

USER="`id -un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

The Bash environment

27

Keyboard, bell, display style: the readline config file:
if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc
fi

PS1="\u@\h \W"

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC PS1

Source initialization files for specific programs (ls, vim, less, ...)
for i in /etc/profile.d/*.sh ; do
 if [-r "$i"]; then
 . $i
 fi
done

Settings for program initialization
source /etc/java.conf
export NPX_PLUGIN_PATH="$JRE_HOME/plugin/ns4plugin/:/usr/lib/netscape/plugins"

PAGER="/usr/bin/less"

unset i

This configuration file sets some basic shell environment variables as well as some variables required by
users running Java and/or Java applications in their web browser. See the section called “Variables”.

See Chapter 7, Conditional statements for more on the conditional if used in this file; Chapter 9, Repetitive
tasks discusses loops such as the for construct.

The Bash source contains sample profile files for general or individual use. These and the one in the
example above need changes in order for them to work in your environment!

/etc/bashrc

On systems offering multiple types of shells, it might be better to put Bash-specific configurations in
this file, since /etc/profile is also read by other shells, such as the Bourne shell. Errors generated
by shells that don't understand the Bash syntax are prevented by splitting the configuration files for the
different types of shells. In such cases, the user's ~/.bashrc might point to /etc/bashrc in order to
include it in the shell initialization process upon login.

You might also find that /etc/profile on your system only holds shell environment and program
startup settings, while /etc/bashrc contains system-wide definitions for shell functions and aliases.
The /etc/bashrc file might be referred to in /etc/profile or in individual user shell initialization
files.

The source contains sample bashrc files, or you might find a copy in /usr/share/doc/
bash-2.05b/startup-files. This is part of the bashrc that comes with the Bash documentation:

alias ll='ls -l'
alias dir='ls -ba'
alias c='clear'
alias ls='ls --color'

The Bash environment

28

alias mroe='more'
alias pdw='pwd'
alias sl='ls --color'

pskill()
{
 local pid

 pid=$(ps -ax | grep $1 | grep -v grep | gawk '{ print $1 }')
 echo -n "killing $1 (process $pid)..."
 kill -9 $pid
 echo "slaughtered."
}

Apart from general aliases, it contains useful aliases which make commands work even if you misspell
them. We will discuss aliases in the section called “Creating and removing aliases”. This file contains a
function, pskill; functions will be studied in detail in Chapter 11, Functions.

Individual user configuration files

I don't have these files?!

These files might not be in your home directory by default; create them if needed.

~/.bash_profile

This is the preferred configuration file for configuring user environments individually. In this file, users
can add extra configuration options or change default settings:

franky~> cat .bash_profile
###
#
.bash_profile file
#
Executed from the bash shell when you log in.
#
###

source ~/.bashrc
source ~/.bash_login
case "$OS" in
 IRIX)
 stty sane dec
 stty erase
 ;;
SunOS)
stty erase
;;
 *)
 stty sane
 ;;

The Bash environment

29

esac

This user configures the backspace character for login on different operating systems. Apart from that, the
user's .bashrc and .bash_login are read.

~/.bash_login

This file contains specific settings that are normally only executed when you log in to the system. In the
example, we use it to configure the umask value and to show a list of connected users upon login. This
user also gets the calendar for the current month:

###
#
Bash_login file
#
commands to perform from the bash shell at login time
(sourced from .bash_profile)
#
###
file protection
umask 002 # all to me, read to group and others
miscellaneous
w
cal `date +"%m"` `date +"%Y"`

In the absence of ~/.bash_profile, this file will be read.

~/.profile

In the absence of ~/.bash_profile and ~/.bash_login, ~/.profile is read. It can hold the
same configurations, which are then also accessible by other shells. Mind that other shells might not un-
derstand the Bash syntax.

~/.bashrc

Today, it is more common to use a non-login shell, for instance when logged in graphically using X terminal
windows. Upon opening such a window, the user does not have to provide a user name or password; no
authentication is done. Bash searches for ~/.bashrc when this happens, so it is referred to in the files
read upon login as well, which means you don't have to enter the same settings in multiple files.

In this user's .bashrc a couple of aliases are defined and variables for specific programs are set after
the system-wide /etc/bashrc is read:

franky ~> cat .bashrc
/home/franky/.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc

fi

The Bash environment

30

shell options

set -o noclobber

my shell variables

export PS1="\[\033[1;44m\]\u \w\[\033[0m\] "
export PATH="$PATH:~/bin:~/scripts"

my aliases

alias cdrecord='cdrecord -dev 0,0,0 -speed=8'
alias ss='ssh octarine'
alias ll='ls -la'

mozilla fix

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=/usr/lib/mozilla:/usr/lib/mozilla/plugins
MOZ_DIST_BIN=/usr/lib/mozilla
MOZ_PROGRAM=/usr/lib/mozilla/mozilla-bin
export MOZILLA_FIVE_HOME LD_LIBRARY_PATH MOZ_DIST_BIN MOZ_PROGRAM

font fix
alias xt='xterm -bg black -fg white &'

BitchX settings
export IRCNAME="frnk"

THE END
franky ~>

More examples can be found in the Bash package. Remember that sample files might need changes in
order to work in your environment.

Aliases are discussed in the section called “Aliases”.

~/.bash_logout

This file contains specific instructions for the logout procedure. In the example, the terminal window is
cleared upon logout. This is useful for remote connections, which will leave a clean window after closing
them.

franky ~> cat .bash_logout
###
#
Bash_logout file
#
commands to perform from the bash shell at logout time
#
###
clear
franky ~>

The Bash environment

31

Changing shell configuration files
When making changes to any of the above files, users have to either reconnect to the system or source
the altered file for the changes to take effect. By interpreting the script this way, changes are applied to
the current shell session:

Figure 3.1. Different prompts for different users

Most shell scripts execute in a private environment: variables are not inherited by child processes unless
they are exported by the parent shell. Sourcing a file containing shell commands is a way of applying
changes to your own environment and setting variables in the current shell.

This example also demonstrates the use of different prompt settings by different users. In this case, red
means danger. When you have a green prompt, don't worry too much.

Note that source resourcefile is the same as . resourcefile.

Should you get lost in all these configuration files, and find yourself confronted with settings of which the
origin is not clear, use echo statements, just like for debugging scripts; see the section called “Debugging
on part(s) of the script”. You might add lines like this:

echo "Now executing .bash_profile.."

or like this:

echo "Now setting PS1 in .bashrc:"
export PS1="[some value]"
echo "PS1 is now set to $PS1"

The Bash environment

32

Variables

Types of variables

As seen in the examples above, shell variables are in uppercase characters by convention. Bash keeps a
list of two types of variables:

Global variables

Global variables or environment variables are available in all shells. The env or printenv commands can
be used to display environment variables. These programs come with the sh-utils package.

Below is a typical output:

franky ~> printenv
CC=gcc
CDPATH=.:~:/usr/local:/usr:/
CFLAGS=-O2 -fomit-frame-pointer
COLORTERM=gnome-terminal
CXXFLAGS=-O2 -fomit-frame-pointer
DISPLAY=:0
DOMAIN=hq.garrels.be
e=
TOR=vi
FCEDIT=vi
FIGNORE=.o:~
G_BROKEN_FILENAMES=1
GDK_USE_XFT=1
GDMSESSION=Default
GNOME_DESKTOP_SESSION_ID=Default
GTK_RC_FILES=/etc/gtk/gtkrc:/nethome/franky/.gtkrc-1.2-gnome2
GWMCOLOR=darkgreen
GWMTERM=xterm
HISTFILESIZE=5000
history_control=ignoredups
HISTSIZE=2000
HOME=/nethome/franky
HOSTNAME=octarine.hq.garrels.be
INPUTRC=/etc/inputrc
IRCNAME=franky
JAVA_HOME=/usr/java/j2sdk1.4.0
LANG=en_US
LDFLAGS=-s
LD_LIBRARY_PATH=/usr/lib/mozilla:/usr/lib/mozilla/plugins
LESSCHARSET=latin1
LESS=-edfMQ
LESSOPEN=|/usr/bin/lesspipe.sh %s
LEX=flex
LOCAL_MACHINE=octarine
LOGNAME=franky
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=01;35:*.tif=01;35:

The Bash environment

33

MACHINES=octarine
MAILCHECK=60
MAIL=/var/mail/franky
MANPATH=/usr/man:/usr/share/man/:/usr/local/man:/usr/X11R6/man
MEAN_MACHINES=octarine
MOZ_DIST_BIN=/usr/lib/mozilla
MOZILLA_FIVE_HOME=/usr/lib/mozilla
MOZ_PROGRAM=/usr/lib/mozilla/mozilla-bin
MTOOLS_FAT_COMPATIBILITY=1
MYMALLOC=0
NNTPPORT=119
NNTPSERVER=news
NPX_PLUGIN_PATH=/plugin/ns4plugin/:/usr/lib/netscape/plugins
OLDPWD=/nethome/franky
OS=Linux
PAGER=less
PATH=/nethome/franky/bin.Linux:/nethome/franky/bin:/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:/usr/bin:/usr/sbin:/bin:/sbin:.
PS1=\[\033[1;44m\]franky is in \w\[\033[0m\]
PS2=More input>
PWD=/nethome/franky
SESSION_MANAGER=local/octarine.hq.garrels.be:/tmp/.ICE-unix/22106
SHELL=/bin/bash
SHELL_LOGIN=--login
SHLVL=2
SSH_AGENT_PID=22161
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/ssh-XXmhQ4fC/agent.22106
START_WM=twm
TERM=xterm
TYPE=type
USERNAME=franky
USER=franky
_=/usr/bin/printenv
VISUAL=vi
WINDOWID=20971661
XAPPLRESDIR=/nethome/franky/app-defaults
XAUTHORITY=/nethome/franky/.Xauthority
XENVIRONMENT=/nethome/franky/.Xdefaults
XFILESEARCHPATH=/usr/X11R6/lib/X11/%L/%T/%N%C%S:/usr/X11R6/lib/X11/%l/%T/%N%C%S:/usr/X11R6/lib/X11/%T/%N%C%S:/usr/X11R6/lib/X11/%L/%T/%N%S:/usr/X11R6/lib/X11/%l/%T/%N%S:/usr/X11R6/lib/X11/%T/%N%S
XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB
XMODIFIERS=@im=none
XTERMID=
XWINHOME=/usr/X11R6
X=X11R6
YACC=bison -y

Local variables

Local variables are only available in the current shell. Using the set built-in command without any options
will display a list of all variables (including environment variables) and functions. The output will be
sorted according to the current locale and displayed in a reusable format.

Below is a diff file made by comparing printenv and set output, after leaving out the functions which are
also displayed by the set command:

The Bash environment

34

franky ~> diff set.sorted printenv.sorted | grep "<" | awk '{ print $2 }'
BASE=/nethome/franky/.Shell/hq.garrels.be/octarine.aliases
BASH=/bin/bash
BASH_VERSINFO=([0]="2"
BASH_VERSION='2.05b.0(1)-release'
COLUMNS=80
DIRSTACK=()
DO_FORTUNE=
EUID=504
GROUPS=()
HERE=/home/franky
HISTFILE=/nethome/franky/.bash_history
HOSTTYPE=i686
IFS=$'
LINES=24
MACHTYPE=i686-pc-linux-gnu
OPTERR=1
OPTIND=1
OSTYPE=linux-gnu
PIPESTATUS=([0]="0")
PPID=10099
PS4='+
PWD_REAL='pwd
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor
THERE=/home/franky
UID=504

Awk

the GNU Awk programming language is explained in Chapter 6, The GNU awk programming
language.

Variables by content

Apart from dividing variables in local and global variables, we can also divide them in categories according
to the sort of content the variable contains. In this respect, variables come in 4 types:

• String variables

• Integer variables

• Constant variables

• Array variables

We'll discuss these types in Chapter 10, More on variables. For now, we will work with integer and string
values for our variables.

Creating variables
Variables are case sensitive and capitalized by default. Giving local variables a lowercase name is a con-
vention which is sometimes applied. However, you are free to use the names you want or to mix cases.
Variables can also contain digits, but a name starting with a digit is not allowed:

The Bash environment

35

prompt> export 1number=1
bash: export: `1number=1': not a valid identifier

To set a variable in the shell, use

VARNAME="value"

Putting spaces around the equal sign will cause errors. It is a good habit to quote content strings when
assigning values to variables: this will reduce the chance that you make errors.

Some examples using upper and lower cases, numbers and spaces:

franky ~> MYVAR1="2"

franky ~> echo $MYVAR1
2

franky ~> first_name="Franky"

franky ~> echo $first_name
Franky

franky ~> full_name="Franky M. Singh"

franky ~> echo $full_name
Franky M. Singh

franky ~> MYVAR-2="2"
bash: MYVAR-2=2: command not found

franky ~> MYVAR1 ="2"
bash: MYVAR1: command not found

franky ~> MYVAR1= "2"
bash: 2: command not found

franky ~> unset MYVAR1 first_name full_name

franky ~> echo $MYVAR1 $first_name $full_name
<--no output-->

franky ~>

Exporting variables
A variable created like the ones in the example above is only available to the current shell. It is a local
variable: child processes of the current shell will not be aware of this variable. In order to pass variables
to a subshell, we need to export them using the export built-in command. Variables that are exported are
referred to as environment variables. Setting and exporting is usually done in one step:

export VARNAME="value"

A subshell can change variables it inherited from the parent, but the changes made by the child don't affect
the parent. This is demonstrated in the example:

The Bash environment

36

franky ~> full_name="Franky M. Singh"

franky ~> bash

franky ~> echo $full_name

franky ~> exit

franky ~> export full_name

franky ~> bash

franky ~> echo $full_name
Franky M. Singh

franky ~> export full_name="Charles the Great"

franky ~> echo $full_name
Charles the Great

franky ~> exit

franky ~> echo $full_name
Franky M. Singh

franky ~>

When first trying to read the value of full_name in a subshell, it is not there (echo shows a null string).
The subshell quits, and full_name is exported in the parent - a variable can be exported after it has been
assigned a value. Then a new subshell is started, in which the variable exported from the parent is visible.
The variable is changed to hold another name, but the value for this variable in the parent stays the same.

Reserved variables

Bourne shell reserved variables

Bash uses certain shell variables in the same way as the Bourne shell. In some cases, Bash assigns a default
value to the variable. The table below gives an overview of these plain shell variables:

Table 3.1. Reserved Bourne shell variables

Variable name Definition

CDPATH A colon-separated list of directories used as a
search path for the cd built-in command.

HOME The current user's home directory; the default for
the cd built-in. The value of this variable is also
used by tilde expansion.

IFS A list of characters that separate fields; used when
the shell splits words as part of expansion.

The Bash environment

37

Variable name Definition

MAIL If this parameter is set to a file name and the
MAILPATH variable is not set, Bash informs the
user of the arrival of mail in the specified file.

MAILPATH A colon-separated list of file names which the
shell periodically checks for new mail.

OPTARG The value of the last option argument processed by
the getopts built-in.

OPTIND The index of the last option argument processed by
the getopts built-in.

PATH A colon-separated list of directories in which the
shell looks for commands.

PS1 The primary prompt string. The default value is
“'\s-\v\$ '”.

PS2 The secondary prompt string. The default value is
“'> '”.

Bash reserved variables

These variables are set or used by Bash, but other shells do not normally treat them specially.

Table 3.2. Reserved Bash variables

Variable name Definition

auto_resume This variable controls how the shell interacts with
the user and job control.

BASH The full pathname used to execute the current in-
stance of Bash.

BASH_ENV If this variable is set when Bash is invoked to exe-
cute a shell script, its value is expanded and used
as the name of a startup file to read before execut-
ing the script.

BASH_VERSION The version number of the current instance of
Bash.

BASH_VERSINFO A read-only array variable whose members hold
version information for this instance of Bash.

COLUMNS Used by the select built-in to determine the termi-
nal width when printing selection lists. Automati-
cally set upon receipt of a SIGWINCH signal.

COMP_CWORD An index into ${COMP_WORDS} of the word con-
taining the current cursor position.

COMP_LINE The current command line.

COMP_POINT The index of the current cursor position relative to
the beginning of the current command.

COMP_WORDS An array variable consisting of the individual
words in the current command line.

The Bash environment

38

Variable name Definition

COMPREPLY An array variable from which Bash reads the pos-
sible completions generated by a shell function in-
voked by the programmable completion facility.

DIRSTACK An array variable containing the current contents
of the directory stack.

EUID The numeric effective user ID of the current user.

FCEDIT The editor used as a default by the -e option to the
fc built-in command.

FIGNORE A colon-separated list of suffixes to ignore when
performing file name completion.

FUNCNAME The name of any currently-executing shell func-
tion.

GLOBIGNORE A colon-separated list of patterns defining the set
of file names to be ignored by file name expan-
sion.

GROUPS An array variable containing the list of groups of
which the current user is a member.

histchars Up to three characters which control history ex-
pansion, quick substitution, and tokenization.

HISTCMD The history number, or index in the history list, of
the current command.

HISTCONTROL Defines whether a command is added to the histo-
ry file.

HISTFILE The name of the file to which the com-
mand history is saved. The default value is
~/.bash_history.

HISTFILESIZE The maximum number of lines contained in the
history file, defaults to 500.

HISTIGNORE A colon-separated list of patterns used to decide
which command lines should be saved in the histo-
ry list.

HISTSIZE The maximum number of commands to remember
on the history list, default is 500.

HOSTFILE Contains the name of a file in the same format as
/etc/hosts that should be read when the shell
needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine Bash is running
on.

IGNOREEOF Controls the action of the shell on receipt of an
EOF character as the sole input.

INPUTRC The name of the Readline initialization file, over-
riding the default /etc/inputrc.

The Bash environment

39

Variable name Definition

LANG Used to determine the locale category for any cate-
gory not specifically selected with a variable start-
ing with LC_.

LC_ALL This variable overrides the value of LANG and any
other LC_ variable specifying a locale category.

LC_COLLATE This variable determines the collation order used
when sorting the results of file name expansion,
and determines the behavior of range expressions,
equivalence classes, and collating sequences with-
in file name expansion and pattern matching.

LC_CTYPE This variable determines the interpretation of char-
acters and the behavior of character classes within
file name expansion and pattern matching.

LC_MESSAGES This variable determines the locale used to trans-
late double-quoted strings preceded by a “$” sign.

LC_NUMERIC This variable determines the locale category used
for number formatting.

LINENO The line number in the script or shell function cur-
rently executing.

LINES Used by the select built-in to determine the col-
umn length for printing selection lists.

MACHTYPE A string that fully describes the system type on
which Bash is executing, in the standard GNU
CPU-COMPANY-SYSTEM format.

MAILCHECK How often (in seconds) that the shell should check
for mail in the files specified in the MAILPATH or
MAIL variables.

OLDPWD The previous working directory as set by the cd
built-in.

OPTERR If set to the value 1, Bash displays error messages
generated by the getopts built-in.

OSTYPE A string describing the operating system Bash is
running on.

PIPESTATUS An array variable containing a list of exit status
values from the processes in the most recently exe-
cuted foreground pipeline (which may contain on-
ly a single command).

POSIXLY_CORRECT If this variable is in the environment when bash
starts, the shell enters POSIX mode.

PPID The process ID of the shell's parent process.

PROMPT_COMMAND If set, the value is interpreted as a command to ex-
ecute before the printing of each primary prompt
(PS1).

PS3 The value of this variable is used as the prompt for
the select command. Defaults to “'#? '”

The Bash environment

40

Variable name Definition

PS4 The value is the prompt printed before the com-
mand line is echoed when the -x option is set; de-
faults to “'+ '”.

PWD The current working directory as set by the cd
built-in command.

RANDOM Each time this parameter is referenced, a random
integer between 0 and 32767 is generated. Assign-
ing a value to this variable seeds the random num-
ber generator.

REPLY The default variable for the read built-in.

SECONDS This variable expands to the number of seconds
since the shell was started.

SHELLOPTS A colon-separated list of enabled shell options.

SHLVL Incremented by one each time a new instance of
Bash is started.

TIMEFORMAT The value of this parameter is used as a format
string specifying how the timing information for
pipelines prefixed with the time reserved word
should be displayed.

TMOUT If set to a value greater than zero, TMOUT is treat-
ed as the default timeout for the read built-in. In
an interative shell, the value is interpreted as the
number of seconds to wait for input after issuing
the primary prompt when the shell is interactive.
Bash terminates after that number of seconds if in-
put does not arrive.

UID The numeric, real user ID of the current user.

Check the Bash man, info or doc pages for extended information. Some variables are read-only, some are
set automatically and some lose their meaning when set to a different value than the default.

Special parameters

The shell treats several parameters specially. These parameters may only be referenced; assignment to
them is not allowed.

Table 3.3. Special bash variables

Character Definition

$* Expands to the positional parameters, starting from
one. When the expansion occurs within double
quotes, it expands to a single word with the value
of each parameter separated by the first character
of the IFS special variable.

$@ Expands to the positional parameters, starting from
one. When the expansion occurs within double
quotes, each parameter expands to a separate word.

The Bash environment

41

Character Definition

$# Expands to the number of positional parameters in
decimal.

$? Expands to the exit status of the most recently exe-
cuted foreground pipeline.

$- A hyphen expands to the current option flags as
specified upon invocation, by the set built-in com-
mand, or those set by the shell itself (such as the -
i).

$$ Expands to the process ID of the shell.

$! Expands to the process ID of the most recently ex-
ecuted background (asynchronous) command.

$0 Expands to the name of the shell or shell script.

$_ The underscore variable is set at shell startup and
contains the absolute file name of the shell or
script being executed as passed in the argument
list. Subsequently, it expands to the last argument
to the previous command, after expansion. It is al-
so set to the full pathname of each command ex-
ecuted and placed in the environment exported to
that command. When checking mail, this parame-
ter holds the name of the mail file.

$* vs. $@

The implementation of “$*” has always been a problem and realistically should have been re-
placed with the behavior of “$@”. In almost every case where coders use “$*”, they mean “$@”.
“$*” Can cause bugs and even security holes in your software.

The positional parameters are the words following the name of a shell script. They are put into the variables
$1, $2, $3 and so on. As long as needed, variables are added to an internal array. $# holds the total
number of parameters, as is demonstrated with this simple script:

#!/bin/bash

positional.sh
This script reads 3 positional parameters and prints them out.

POSPAR1="$1"
POSPAR2="$2"
POSPAR3="$3"

echo "$1 is the first positional parameter, \$1."
echo "$2 is the second positional parameter, \$2."
echo "$3 is the third positional parameter, \$3."
echo
echo "The total number of positional parameters is $#."

Upon execution one could give any numbers of arguments:

The Bash environment

42

franky ~> positional.sh one two three four five
one is the first positional parameter, $1.
two is the second positional parameter, $2.
three is the third positional parameter, $3.

The total number of positional parameters is 5.

franky ~> positional.sh one two
one is the first positional parameter, $1.
two is the second positional parameter, $2.
 is the third positional parameter, $3.

The total number of positional parameters is 2.

More on evaluating these parameters is in Chapter 7, Conditional statements and the section called “The
shift built-in”.

Some examples on the other special parameters:

franky ~> grep dictionary /usr/share/dict/words
dictionary

franky ~> echo $_
/usr/share/dict/words

franky ~> echo $$
10662

franky ~> mozilla &
[1] 11064

franky ~> echo $!
11064

franky ~> echo $0
bash

franky ~> echo $?
0

franky ~> ls doesnotexist
ls: doesnotexist: No such file or directory

franky ~> echo $?
1

franky ~>

User franky starts entering the grep command, which results in the assignment of the _ variable. The
process ID of his shell is 10662. After putting a job in the background, the ! holds the process ID of the
backgrounded job. The shell running is bash. When a mistake is made, ? holds an exit code different
from 0 (zero).

The Bash environment

43

Script recycling with variables
Apart from making the script more readable, variables will also enable you to faster apply a script in
another environment or for another purpose. Consider the following example, a very simple script that
makes a backup of franky's home directory to a remote server:

#!/bin/bash

This script makes a backup of my home directory.

cd /home

This creates the archive
tar cf /var/tmp/home_franky.tar franky > /dev/null 2>&1

First remove the old bzip2 file. Redirect errors because this generates some if the archive
does not exist. Then create a new compressed file.
rm /var/tmp/home_franky.tar.bz2 2> /dev/null
bzip2 /var/tmp/home_franky.tar

Copy the file to another host - we have ssh keys for making this work without intervention.
scp /var/tmp/home_franky.tar.bz2 bordeaux:/opt/backup/franky > /dev/null 2>&1

Create a timestamp in a logfile.
date >> /home/franky/log/home_backup.log
echo backup succeeded >> /home/franky/log/home_backup.log

First of all, you are more likely to make errors if you name files and directories manually each time you
need them. Secondly, suppose franky wants to give this script to carol, then carol will have to do quite
some editing before she can use the script to back up her home directory. The same is true if franky wants
to use this script for backing up other directories. For easy recycling, make all files, directories, usernames,
servernames etcetera variable. Thus, you only need to edit a value once, without having to go through the
entire script to check where a parameter occurs. This is an example:

#!/bin/bash

This script makes a backup of my home directory.

Change the values of the variables to make the script work for you:
BACKUPDIR=/home
BACKUPFILES=franky
TARFILE=/var/tmp/home_franky.tar
BZIPFILE=/var/tmp/home_franky.tar.bz2
SERVER=bordeaux
REMOTEDIR=/opt/backup/franky
LOGFILE=/home/franky/log/home_backup.log

cd $BACKUPDIR

This creates the archive
tar cf $TARFILE $BACKUPFILES > /dev/null 2>&1

The Bash environment

44

First remove the old bzip2 file. Redirect errors because this generates some if the archive
does not exist. Then create a new compressed file.
rm $BZIPFILE 2> /dev/null
bzip2 $TARFILE

Copy the file to another host - we have ssh keys for making this work without intervention.
scp $BZIPFILE $SERVER:$REMOTEDIR > /dev/null 2>&1

Create a timestamp in a logfile.
date >> $LOGFILE
echo backup succeeded >> $LOGFILE

Large directories and low bandwidth

The above is purely an example that everybody can understand, using a small directory and a host
on the same subnet. Depending on your bandwidth, the size of the directory and the location of the
remote server, it can take an awful lot of time to make backups using this mechanism. For larger
directories and lower bandwidth, use rsync to keep the directories at both ends synchronized.

Quoting characters

Why?
A lot of keys have special meanings in some context or other. Quoting is used to remove the special mean-
ing of characters or words: quotes can disable special treatment for special characters, they can prevent
reserved words from being recognized as such and they can disable parameter expansion.

Escape characters
Escape characters are used to remove the special meaning from a single character. A non-quoted backslash,
\, is used as an escape character in Bash. It preserves the literal value of the next character that follows,
with the exception of newline. If a newline character appears immediately after the backslash, it marks
the continuation of a line when it is longer that the width of the terminal; the backslash is removed from
the input stream and effectively ignored.

franky ~> date=20021226

franky ~> echo $date
20021226

franky ~> echo \$date
$date

In this example, the variable date is created and set to hold a value. The first echo displays the value of
the variable, but for the second, the dollar sign is escaped.

Single quotes
Single quotes ('') are used to preserve the literal value of each character enclosed within the quotes. A
single quote may not occur between single quotes, even when preceded by a backslash.

We continue with the previous example:

The Bash environment

45

franky ~> echo '$date'
$date

Double quotes
Using double quotes the literal value of all characters enclosed is preserved, except for the dollar sign, the
backticks (backward single quotes, ``) and the backslash.

The dollar sign and the backticks retain their special meaning within the double quotes.

The backslash retains its meaning only when followed by dollar, backtick, double quote, backslash or
newline. Within double quotes, the backslashes are removed from the input stream when followed by one
of these characters. Backslashes preceding characters that don't have a special meaning are left unmodified
for processing by the shell interpreter.

A double quote may be quoted within double quotes by preceding it with a backslash.

franky ~> echo "$date"
20021226

franky ~> echo "`date`"
Sun Apr 20 11:22:06 CEST 2003

franky ~> echo "I'd say: \"Go for it!\""
I'd say: "Go for it!"

franky ~> echo "\"
More input>"

franky ~> echo "\\"
\

ANSI-C quoting
Words in the form “$'STRING'” are treated in a special way. The word expands to a string, with back-
slash-escaped characters replaced as specified by the ANSI-C standard. Backslash escape sequences can
be found in the Bash documentation.

Locales
A double-quoted string preceded by a dollar sign will cause the string to be translated according to the
current locale. If the current locale is “C” or “POSIX”, the dollar sign is ignored. If the string is translated
and replaced, the replacement is double-quoted.

Shell expansion

General
After the command has been split into tokens (see the section called “Shell syntax”), these tokens or words
are expanded or resolved. There are eight kinds of expansion performed, which we will discuss in the next
sections, in the order that they are expanded.

The Bash environment

46

After all expansions, quote removal is performed.

Brace expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. Patterns to be brace-expand-
ed take the form of an optional PREAMBLE, followed by a series of comma-separated strings between a
pair of braces, followed by an optional POSTSCRIPT. The preamble is prefixed to each string contained
within the braces, and the postscript is then appended to each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order
is preserved:

franky ~> echo sp{el,il,al}l
spell spill spall

Brace expansion is performed before any other expansions, and any characters special to other expansions
are preserved in the result. It is strictly textual. Bash does not apply any syntactic interpretation to the
context of the expansion or the text between the braces. To avoid conflicts with parameter expansion, the
string “${” is not considered eligible for brace expansion.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma. Any incorrectly formed brace expansion is left unchanged.

Tilde expansion
If a word begins with an unquoted tilde character (“~”), all of the characters up to the first unquoted slash
(or all characters, if there is no unquoted slash) are considered a tilde-prefix. If none of the characters in the
tilde-prefix are quoted, the characters in the tilde-prefix following the tilde are treated as a possible login
name. If this login name is the null string, the tilde is replaced with the value of the HOME shell variable.
If HOME is unset, the home directory of the user executing the shell is substituted instead. Otherwise, the
tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is “~+”, the value of the shell variable PWD replaces the tilde-prefix. If the tilde-prefix
is “~-”, the value of the shell variable OLDPWD, if it is set, is substituted.

If the characters following the tilde in the tilde-prefix consist of a number N, optionally prefixed by a “+”
or a “-”, the tilde-prefix is replaced with the corresponding element from the directory stack, as it would be
displayed by the dirs built-in invoked with the characters following tilde in the tilde-prefix as an argument.
If the tilde-prefix, without the tilde, consists of a number without a leading “+” or “-”, “+” is assumed.

If the login name is invalid, or the tilde expansion fails, the word is left unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately following a “:” or “=”. In
these cases, tilde expansion is also performed. Consequently, one may use file names with tildes in assign-
ments to PATH, MAILPATH, and CDPATH, and the shell assigns the expanded value.

Example:

franky ~> export PATH="$PATH:~/testdir"

~/testdir will be expanded to $HOME/testdir, so if $HOME is /var/home/franky, the direc-
tory /var/home/franky/testdir will be added to the content of the PATH variable.

The Bash environment

47

Shell parameter and variable expansion
The “$” character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to
protect the variable to be expanded from characters immediately following it which could be interpreted
as part of the name.

When braces are used, the matching ending brace is the first “}” not escaped by a backslash or within
a quoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

The basic form of parameter expansion is “${PARAMETER}”. The value of “PARAMETER” is substi-
tuted. The braces are required when “PARAMETER” is a positional parameter with more than one digit,
or when “PARAMETER” is followed by a character that is not to be interpreted as part of its name.

If the first character of “PARAMETER” is an exclamation point, Bash uses the value of the variable
formed from the rest of “PARAMETER” as the name of the variable; this variable is then expanded and
that value is used in the rest of the substitution, rather than the value of “PARAMETER” itself. This is
known as indirect expansion.

You are certainly familiar with straight parameter expansion, since it happens all the time, even in the
simplest of cases, such as the one above or the following:

franky ~> echo $SHELL
/bin/bash

The following is an example of indirect expansion:

franky ~> echo ${!N*}
NNTPPORT NNTPSERVER NPX_PLUGIN_PATH

Note that this is not the same as echo $N*.

The following construct allows for creation of the named variable if it does not yet exist:

${VAR:=value}

Example:

franky ~> echo $FRANKY

franky ~> echo ${FRANKY:=Franky}
Franky

Special parameters, among others the positional parameters, may not be assigned this way, however.

We will further discuss the use of the curly braces for treatment of variables in Chapter 10, More on
variables. More information can also be found in the Bash info pages.

Command substitution
Command substitution allows the output of a command to replace the command itself. Command substi-
tution occurs when a command is enclosed like this:

The Bash environment

48

$(command)

or like this using backticks:

`command`

Bash performs the expansion by executing COMMAND and replacing the command substitution with the
standard output of the command, with any trailing newlines deleted. Embedded newlines are not deleted,
but they may be removed during word splitting.

franky ~> echo `date`
Thu Feb 6 10:06:20 CET 2003

When the old-style backquoted form of substitution is used, backslash retains its literal meaning except
when followed by “$”, “`”, or “\”. The first backticks not preceded by a backslash terminates the command
substitution. When using the “$(COMMAND)” form, all characters between the parentheses make up the
command; none are treated specially.

Command substitutions may be nested. To nest when using the backquoted form, escape the inner backticks
with backslashes.

If the substitution appears within double quotes, word splitting and file name expansion are not performed
on the results.

Arithmetic expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:

$((EXPRESSION))

The expression is treated as if it were within double quotes, but a double quote inside the parentheses is
not treated specially. All tokens in the expression undergo parameter expansion, command substitution,
and quote removal. Arithmetic substitutions may be nested.

Evaluation of arithmetic expressions is done in fixed-width integers with no check for overflow - although
division by zero is trapped and recognized as an error. The operators are roughly the same as in the C
programming language. In order of decreasing precedence, the list looks like this:

Table 3.4. Arithmetic operators

Operator Meaning

VAR++ and VAR-- variable post-increment and post-decrement

++VAR and --VAR variable pre-increment and pre-decrement

- and + unary minus and plus

! and ~ logical and bitwise negation

** exponentiation

*, / and % multiplication, division, remainder

+ and - addition, subtraction

<< and >> left and right bitwise shifts

<=, >=, < and > comparison operators

The Bash environment

49

Operator Meaning

== and != equality and inequality

& bitwise AND

^ bitwise exclusive OR

| bitwise OR

&& logical AND

|| logical OR

expr ? expr : expr conditional evaluation

=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^= and |= assignments

, separator between expressions

Shell variables are allowed as operands; parameter expansion is performed before the expression is eval-
uated. Within an expression, shell variables may also be referenced by name without using the parameter
expansion syntax. The value of a variable is evaluated as an arithmetic expression when it is referenced.
A shell variable need not have its integer attribute turned on to be used in an expression.

Constants with a leading 0 (zero) are interpreted as octal numbers. A leading “0x” or “0X” denotes hexa-
decimal. Otherwise, numbers take the form “[BASE'#']N”, where “BASE” is a decimal number between
2 and 64 representing the arithmetic base, and N is a number in that base. If “BASE'#'” is omitted, then
base 10 is used. The digits greater than 9 are represented by the lowercase letters, the uppercase letters,
“@”, and “_”, in that order. If “BASE” is less than or equal to 36, lowercase and uppercase letters may be
used interchangably to represent numbers between 10 and 35.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are evaluated first and may
override the precedence rules above.

Wherever possible, Bash users should try to use the syntax with square brackets:

$[EXPRESSION]

However, this will only calculate the result of EXPRESSION, and do no tests:

franky ~> echo $[365*24]
8760

See the section called “Numeric comparisons”, among others, for practical examples in scripts.

Process substitution
Process substitution is supported on systems that support named pipes (FIFOs) or the /dev/fd method
of naming open files. It takes the form of

<(LIST)

or

>(LIST)

The process LIST is run with its input or output connected to a FIFO or some file in /dev/fd. The name
of this file is passed as an argument to the current command as the result of the expansion. If the “>(LIST)”

The Bash environment

50

form is used, writing to the file will provide input for LIST. If the “<(LIST)” form is used, the file passed
as an argument should be read to obtain the output of LIST. Note that no space may appear between the
< or > signs and the left parenthesis, otherwise the construct would be interpreted as a redirection.

When available, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

More information in the section called “Redirection and file descriptors”.

Word splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that
did not occur within double quotes for word splitting.

The shell treats each character of $IFS as a delimiter, and splits the results of the other expansions into
words on these characters. If IFS is unset, or its value is exactly “'<space><tab><newline>'”, the default,
then any sequence of IFS characters serves to delimit words. If IFS has a value other than the default,
then sequences of the whitespace characters “space” and “Tab” are ignored at the beginning and end of
the word, as long as the whitespace character is in the value of IFS (an IFS whitespace character). Any
character in IFS that is not IFS whitespace, along with any adjacent IF whitespace characters, delimits
a field. A sequence of IFS whitespace characters is also treated as a delimiter. If the value of IFS is null,
no word splitting occurs.

Explicit null arguments (“""” or “''”) are retained. Unquoted implicit null arguments, resulting from the
expansion of parameters that have no values, are removed. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Expansion and word splitting

If no expansion occurs, no splitting is performed.

File name expansion
After word splitting, unless the -f option has been set (see the section called “Debugging on part(s) of the
script”), Bash scans each word for the characters “*”, “?”, and “[”. If one of these characters appears, then
the word is regarded as a PATTERN, and replaced with an alphabetically sorted list of file names matching
the pattern. If no matching file names are found, and the shell option nullglob is disabled, the word
is left unchanged. If the nullglob option is set, and no matches are found, the word is removed. If the
shell option nocaseglob is enabled, the match is performed without regard to the case of alphabetic
characters.

When a pattern is used for file name generation, the character “.” at the start of a file name or immediately
following a slash must be matched explicitly, unless the shell option dotglob is set. When matching a
file name, the slash character must always be matched explicitly. In other cases, the “.” character is not
treated specially.

The GLOBIGNORE shell variable may be used to restrict the set of file names matching a pattern. If
GLOBIGNORE is set, each matching file name that also matches one of the patterns in GLOBIGNORE is
removed from the list of matches. The file names . and .. are always ignored, even when GLOBIGNORE
is set. However, setting GLOBIGNORE has the effect of enabling the dotglob shell option, so all other
file names beginning with a “.” will match. To get the old behavior of ignoring file names beginning with a
“.”, make “.*” one of the patterns in GLOBIGNORE. The dotglob option is disabled when GLOBIGNORE
is unset.

The Bash environment

51

Aliases

What are aliases?
An alias allows a string to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset with the alias and unalias built-in commands.
Issue the alias without options to display a list of aliases known to the current shell.

franky: ~> alias
alias ..='cd ..'
alias ...='cd ../..'
alias='cd ../../..'
alias PAGER='less -r'
alias Txterm='export TERM=xterm'
alias XARGS='xargs -r'
alias cdrecord='cdrecord -dev 0,0,0 -speed=8'
alias e='vi'
alias egrep='grep -E'
alias ewformat='fdformat -n /dev/fd0u1743; ewfsck'
alias fgrep='grep -F'
alias ftp='ncftp -d15'
alias h='history 10'
alias fformat='fdformat /dev/fd0H1440'
alias j='jobs -l'
alias ksane='setterm -reset'
alias ls='ls -F --color=auto'
alias m='less'
alias md='mkdir'
alias od='od -Ax -ta -txC'
alias p='pstree -p'
alias ping='ping -vc1'
alias sb='ssh blubber'
alias sl='ls'
alias ss='ssh octarine'
alias tar='gtar'
alias tmp='cd /tmp'
alias unaliasall='unalias -a'
alias vi='eval `resize`;vi'
alias vt100='export TERM=vt100'
alias which='type'
alias xt='xterm -bg black -fg white &'

franky ~>

Aliases are useful for specifying the default version of a command that exists in several versions on your
system, or to specify default options to a command. Another use for aliases is for correcting incorrect
spelling.

The first word of each simple command, if unquoted, is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell input,
including shell metacharacters, with the exception that the alias name may not contain “=”. The first word
of the replacement text is tested for aliases, but a word that is identical to an alias being expanded is not

The Bash environment

52

expanded a second time. This means that one may alias ls to ls -F, for instance, and Bash will not try to
recursively expand the replacement text. If the last character of the alias value is a space or tab character,
then the next command word following the alias is also checked for alias expansion.

Aliases are not expanded when the shell is not interactive, unless the expand_aliases option is set
using the shopt shell built-in.

Creating and removing aliases

Aliases are created using the alias shell built-in. For permanent use, enter the alias in one of your shell
initialization files; if you just enter the alias on the command line, it is only recognized within the current
shell.

franky ~> alias dh='df -h'

franky ~> dh
Filesystem Size Used Avail Use% Mounted on
/dev/hda7 1.3G 272M 1018M 22% /
/dev/hda1 121M 9.4M 105M 9% /boot
/dev/hda2 13G 8.7G 3.7G 70% /home
/dev/hda3 13G 5.3G 7.1G 43% /opt
none 243M 0 243M 0% /dev/shm
/dev/hda6 3.9G 3.2G 572M 85% /usr
/dev/hda5 5.2G 4.3G 725M 86% /var

franky ~> unalias dh

franky ~> dh
bash: dh: command not found

franky ~>

Bash always reads at least one complete line of input before executing any of the commands on that line.
Aliases are expanded when a command is read, not when it is executed. Therefore, an alias definition
appearing on the same line as another command does not take effect until the next line of input is read. The
commands following the alias definition on that line are not affected by the new alias. This behavior is also
an issue when functions are executed. Aliases are expanded when a function definition is read, not when
the function is executed, because a function definition is itself a compound command. As a consequence,
aliases defined in a function are not available until after that function is executed. To be safe, always put
alias definitions on a separate line, and do not use alias in compound commands.

Aliases are not inherited by child processes. Bourne shell (sh) does not recognize aliases.

More about functions is in Chapter 11, Functions.

Functions are faster

Aliases are looked up after functions and thus resolving is slower. While aliases are easier to
understand, shell functions are preferred over aliases for almost every purpose.

The Bash environment

53

More Bash options

Displaying options
We already discussed a couple of Bash options that are useful for debugging your scripts. In this section,
we will take a more in-depth view of the Bash options.

Use the -o option to set to display all shell options:

willy:~> set -o
allexport off
braceexpand on
emacs on
errexit off
hashall on
histexpand on
history on
ignoreeof off
interactive-comments on
keyword off
monitor on
noclobber off
noexec off
noglob off
nolog off
notify off
nounset off
onecmd off
physical off
posix off
privileged off
verbose off
vi off
xtrace off

See the Bash Info pages, section Shell Built-in Commands → The Set Built-in for a description of each
option. A lot of options have one-character shorthands: the xtrace option, for instance, is equal to spec-
ifying set -x.

Changing options
Shell options can either be set different from the default upon calling the shell, or be set during shell
operation. They may also be included in the shell resource configuration files.

The following command executes a script in POSIX-compatible mode:

willy:~/scripts> bash --posix script.sh

For changing the current environment temporarily, or for use in a script, we would rather use set. Use -
(dash) for enabling an option, + for disabling:

The Bash environment

54

willy:~/test> set -o noclobber

willy:~/test> touch test

willy:~/test> date > test
bash: test: cannot overwrite existing file

willy:~/test> set +o noclobber

willy:~/test> date > test

The above example demonstrates the noclobber option, which prevents existing files from being over-
written by redirection operations. The same goes for one-character options, for instance -u, which will
treat unset variables as an error when set, and exits a non-interactive shell upon encountering such errors:

willy:~> echo $VAR

willy:~> set -u

willy:~> echo $VAR
bash: VAR: unbound variable

This option is also useful for detecting incorrect content assignment to variables: the same error will also
occur, for instance, when assigning a character string to a variable that was declared explicitly as one
holding only integer values.

One last example follows, demonstrating the noglob option, which prevents special characters from
being expanded:

willy:~/testdir> set -o noglob

willy:~/testdir> touch *

willy:~/testdir> ls -l *
-rw-rw-r-- 1 willy willy 0 Feb 27 13:37 *

Summary
The Bash environment can be configured globally and on a per user basis. Various configuration files are
used to fine-tune the behavior of the shell.

These files contain shell options, settings for variables, function definitions and various other building
blocks for creating ourselves a cosy environment.

Except for the reserved Bourne shell, Bash and special parameters, variable names can be chosen more
or less freely.

Because a lot of characters have double or even triple meanings, depending on the environment, Bash uses
a system of quoting to take away special meaning from one or multiple characters when special treatment
is not wanted.

The Bash environment

55

Bash uses various methods of expanding command line entries in order to determine which commands
to execute.

Exercises
For this exercise, you will need to read the useradd man pages, because we are going to use the /etc/
skel directory to hold default shell configuration files, which are copied to the home directory of each
newly added user.

First we will do some general exercises on setting and displaying variables.

1. Create 3 variables, VAR1, VAR2 and VAR3; initialize them to hold the values “thirteen”, “13” and
“Happy Birthday” respectively.

2. Display the values of all three variables.

3. Are these local or global variables?

4. Remove VAR3.

5. Can you see the two remaining variables in a new terminal window?

6. Edit /etc/profile so that all users are greeted upon login (test this).

7. For the root account, set the prompt to something like “Danger!! root is doing stuff in \w”, preferably
in a bright color such as red or pink or in reverse video mode.

8. Make sure that newly created users also get a nice personalized prompt which informs them on which
system in which directory they are working. Test your changes by adding a new user and logging in
as that user.

9. Write a script in which you assign two integer values to two variables. The script should calculate
the surface of a rectangle which has these proportions. It should be aired with comments and generate
elegant output.

Don't forget to chmod your scripts!

56

Chapter 4. Regular expressions
In this chapter we discuss:

• Using regular expressions

• Regular expression metacharacters

• Finding patterns in files or output

• Character ranges and classes in Bash

Regular expressions

What are regular expressions?
A regular expression is a pattern that describes a set of strings. Regular expressions are constructed anal-
ogously to arithmetic expressions by using various operators to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most characters,
including all letters and digits, are regular expressions that match themselves. Any metacharacter with
special meaning may be quoted by preceding it with a backslash.

Regular expression metacharacters
A regular expression may be followed by one of several repetition operators (metacharacters):

Table 4.1. Regular expression operators

Operator Effect

. Matches any single character.

? The preceding item is optional and will be
matched, at most, once.

* The preceding item will be matched zero or more
times.

+ The preceding item will be matched one or more
times.

{N} The preceding item is matched exactly N times.

{N,} The preceding item is matched N or more times.

{N,M} The preceding item is matched at least N times,
but not more than M times.

- represents the range if it's not first or last in a list
or the ending point of a range in a list.

^ Matches the empty string at the beginning of a
line; also represents the characters not in the range
of a list.

$ Matches the empty string at the end of a line.

Regular expressions

57

Operator Effect

\b Matches the empty string at the edge of a word.

\B Matches the empty string provided it's not at the
edge of a word.

\< Match the empty string at the beginning of word.

\> Match the empty string at the end of word.

Two regular expressions may be concatenated; the resulting regular expression matches any string formed
by concatenating two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator “|”; the resulting regular expression matches
any string matching either subexpression.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A whole
subexpression may be enclosed in parentheses to override these precedence rules.

Basic versus extended regular expressions
In basic regular expressions the metacharacters “?”, “+”, “{”, “|”, “(”, and “)” lose their special meaning;
instead use the backslashed versions “\?”, “\+”, “\{”, “\|”, “\(”, and “\)”.

Check in your system documentation whether commands using regular expressions support extended ex-
pressions.

Examples using grep

What is grep?
grep searches the input files for lines containing a match to a given pattern list. When it finds a match in a
line, it copies the line to standard output (by default), or whatever other sort of output you have requested
with options.

Though grep expects to do the matching on text, it has no limits on input line length other than available
memory, and it can match arbitrary characters within a line. If the final byte of an input file is not a newline,
grep silently supplies one. Since newline is also a separator for the list of patterns, there is no way to
match newline characters in a text.

Some examples:

cathy ~> grep root /etc/passwd
root:x:0:0:root:/root:/bin/bash
operator:x:11:0:operator:/root:/sbin/nologin

cathy ~> grep -n root /etc/passwd
1:root:x:0:0:root:/root:/bin/bash
12:operator:x:11:0:operator:/root:/sbin/nologin

cathy ~> grep -v bash /etc/passwd | grep -v nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

Regular expressions

58

halt:x:7:0:halt:/sbin:/sbin/halt
news:x:9:13:news:/var/spool/news:
mailnull:x:47:47::/var/spool/mqueue:/dev/null
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
nscd:x:28:28:NSCD Daemon:/:/bin/false
named:x:25:25:Named:/var/named:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null
ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false
apache:x:48:48:Apache:/var/www:/bin/false

cathy ~> grep -c false /etc/passwd
7

cathy ~> grep -i ps ~/.bash* | grep -v history
/home/cathy/.bashrc:PS1="\[\033[1;44m\]$USER is in \w\[\033[0m\] "

With the first command, user cathy displays the lines from /etc/passwd containing the string root.

Then she displays the line numbers containing this search string.

With the third command she checks which users are not using bash, but accounts with the nologin shell
are not displayed.

Then she counts the number of accounts that have /bin/false as the shell.

The last command displays the lines from all the files in her home directory starting with ~/.bash,
excluding matches containing the string history, so as to exclude matches from ~/.bash_history
which might contain the same string, in upper or lower cases. Note that the search is for the string “ps”,
and not for the command ps.

Now let's see what else we can do with grep, using regular expressions.

Grep and regular expressions

If you are not on Linux

We use GNU grep in these examples, which supports extended regular expressions. GNU grep is
the default on Linux systems. If you are working on proprietary systems, check with the -V option
which version you are using. GNU grep can be downloaded from http://gnu.org/directory/.

Line and word anchors

From the previous example, we now exclusively want to display lines starting with the string “root”:

cathy ~> grep ^root /etc/passwd
root:x:0:0:root:/root:/bin/bash

If we want to see which accounts have no shell assigned whatsoever, we search for lines ending in “:”:

cathy ~> grep :$ /etc/passwd
news:x:9:13:news:/var/spool/news:

http://gnu.org/directory/

Regular expressions

59

To check that PATH is exported in ~/.bashrc, first select “export” lines and then search for lines starting
with the string “PATH”, so as not to display MANPATH and other possible paths:

cathy ~> grep export ~/.bashrc | grep '\<PATH'
 export PATH="/bin:/usr/lib/mh:/lib:/usr/bin:/usr/local/bin:/usr/ucb:/usr/dbin:$PATH"

Similarly, \> matches the end of a word.

If you want to find a string that is a separate word (enclosed by spaces), it is better use the -w, as in this
example where we are displaying information for the root partition:

cathy ~> grep -w / /etc/fstab
LABEL=/ / ext3 defaults 1 1

If this option is not used, all the lines from the file system table will be displayed.

Character classes

A bracket expression is a list of characters enclosed by “[” and “]”. It matches any single character in that
list; if the first character of the list is the caret, “^”, then it matches any character NOT in the list. For
example, the regular expression “[0123456789]” matches any single digit.

Within a bracket expression, a range expression consists of two characters separated by a hyphen. It match-
es any single character that sorts between the two characters, inclusive, using the locale's collating sequence
and character set. For example, in the default C locale, “[a-d]” is equivalent to “[abcd]”. Many locales sort
characters in dictionary order, and in these locales “[a-d]” is typically not equivalent to “[abcd]”; it might
be equivalent to “[aBbCcDd]”, for example. To obtain the traditional interpretation of bracket expressions,
you can use the C locale by setting the LC_ALL environment variable to the value “C”.

Finally, certain named classes of characters are predefined within bracket expressions. See the grep man
or info pages for more information about these predefined expressions.

cathy ~> grep [yf] /etc/group
sys:x:3:root,bin,adm
tty:x:5:
mail:x:12:mail,postfix
ftp:x:50:
nobody:x:99:
floppy:x:19:
xfs:x:43:
nfsnobody:x:65534:
postfix:x:89:

In the example, all the lines containing either a “y” or “f” character are displayed.

Wildcards

Use the “.” for a single character match. If you want to get a list of all five-character English dictionary
words starting with “c” and ending in “h” (handy for solving crosswords):

cathy ~> grep '\<c...h\>' /usr/share/dict/words

Regular expressions

60

catch
clash
cloth
coach
couch
cough
crash
crush

If you want to display lines containing the literal dot character, use the -F option to grep.

For matching multiple characters, use the asterisk. This example selects all words starting with “c” and
ending in “h” from the system's dictionary:

cathy ~> grep '\<c.*h\>' /usr/share/dict/words
caliph
cash
catch
cheesecloth
cheetah
--output omitted--

If you want to find the literal asterisk character in a file or output, use single quotes. Cathy in the example
below first tries finding the asterisk character in /etc/profile without using quotes, which does not
return any lines. Using quotes, output is generated:

cathy ~> grep * /etc/profile

cathy ~> grep '*' /etc/profile
for i in /etc/profile.d/*.sh ; do

Pattern matching using Bash features

Character ranges
Apart from grep and regular expressions, there's a good deal of pattern matching that you can do directly
in the shell, without having to use an external program.

As you already know, the asterisk (*) and the question mark (?) match any string or any single character,
respectively. Quote these special characters to match them literally:

cathy ~> touch "*"

cathy ~> ls "*"
*

But you can also use the square braces to match any enclosed character or range of characters, if pairs of
characters are separated by a hyphen. An example:

cathy ~> ls -ld [a-cx-z]*

Regular expressions

61

drwxr-xr-x 2 cathy cathy 4096 Jul 20 2002 app-defaults/
drwxrwxr-x 4 cathy cathy 4096 May 25 2002 arabic/
drwxrwxr-x 2 cathy cathy 4096 Mar 4 18:30 bin/
drwxr-xr-x 7 cathy cathy 4096 Sep 2 2001 crossover/
drwxrwxr-x 3 cathy cathy 4096 Mar 22 2002 xml/

This lists all files in cathy's home directory, starting with “a”, “b”, “c”, “x”, “y” or “z”.

If the first character within the braces is “!” or “^”, any character not enclosed will be matched. To match
the dash (“-”), include it as the first or last character in the set. The sorting depends on the current locale and
of the value of the LC_COLLATE variable, if it is set. Mind that other locales might interpret “[a-cx-z]”
as “[aBbCcXxYyZz]” if sorting is done in dictionary order. If you want to be sure to have the traditional
interpretation of ranges, force this behavior by setting LC_COLLATE or LC_ALL to “C”.

Character classes
Character classes can be specified within the square braces, using the syntax [:CLASS:], where CLASS
is defined in the POSIX standard and has one of the values

“alnum”, “alpha”, “ascii”, “blank”, “cntrl”, “digit”, “graph”, “lower”, “print”, “punct”, “space”, “upper”,
“word” or “xdigit”.

Some examples:

cathy ~> ls -ld [[:digit:]]*
drwxrwxr-x 2 cathy cathy 4096 Apr 20 13:45 2/

cathy ~> ls -ld [[:upper:]]*
drwxrwxr-- 3 cathy cathy 4096 Sep 30 2001 Nautilus/
drwxrwxr-x 4 cathy cathy 4096 Jul 11 2002 OpenOffice.org1.0/
-rw-rw-r-- 1 cathy cathy 997376 Apr 18 15:39 Schedule.sdc

When the extglob shell option is enabled (using the shopt built-in), several extended pattern matching

operators are recognized. Read more in the Bash info pages, section Basic shell features → Shell Expan-

sions → Filename Expansion → Pattern Matching.

Summary
Regular expressions are powerful tools for selecting particular lines from files or output. A lot of UNIX
commands use regular expressions: vim, perl, the PostgreSQL database and so on. They can be made
available in any language or application using external libraries, and they even found their way to non-
UNIX systems. For instance, regular expressions are used in the Excell spreadsheet that comes with the
MicroSoft Windows Office suite. In this chapter we got the feel of the grep command, which is indispens-
able in any UNIX environment.

Note

The grep command can do much more than the few tasks we discussed here; we only used it as
an example for regular expressions. The GNU grep version comes with plenty of documentation,
which you are strongly advised to read!

Bash has built-in features for matching patterns and can recognize character classes and ranges.

Regular expressions

62

Exercises
These exercises will help you master regular expressions.

1. Display a list of all the users on your system who log in with the Bash shell as a default.

2. From the /etc/group directory, display all lines starting with the string “daemon”.

3. Print all the lines from the same file that don't contain the string.

4. Display localhost information from the /etc/hosts file, display the line number(s) matching the
search string and count the number of occurrences of the string.

5. Display a list of /usr/share/doc subdirectories containing information about shells.

6. How many README files do these subdirectories contain? Don't count anything in the form of
“README.a_string”.

7. Make a list of files in your home directory that were changed less that 10 hours ago, using grep, but
leave out directories.

8. Put these commands in a shell script that will generate comprehensible output.

9. Can you find an alternative for wc -l, using grep?

10.Using the file system table (/etc/fstab for instance), list local disk devices.

11.Make a script that checks whether a user exists in /etc/passwd. For now, you can specify the user
name in the script, you don't have to work with arguments and conditionals at this stage.

12.Display configuration files in /etc that contain numbers in their names.

63

Chapter 5. The GNU sed stream editor
At the end of this chapter you will know about the following topics:

• What is sed?

• Interactive use of sed

• Regular expressions and stream editing

• Using sed commands in scripts

This is an introduction

These explanations are far from complete and certainly not meant to be used as the definite user manual for
sed. This chapter is only included in order to show some more interesting topics in the next chapters, and
because every power user should have a basic knowledge of things that can be done with this editor.

For detailed information, refer to the sed info and man pages.

Introduction

What is sed?
A Stream EDitor is used to perform basic transformations on text read from a file or a pipe. The result is
sent to standard output. The syntax for the sed command has no output file specification, but results can
be saved to a file using output redirection. The editor does not modify the original input.

What distinguishes sed from other editors, such as vi and ed, is its ability to filter text that it gets from a
pipeline feed. You do not need to interact with the editor while it is running; that is why sed is sometimes
called a batch editor. This feature allows use of editing commands in scripts, greatly easing repetitive
editing tasks. When facing replacement of text in a large number of files, sed is a great help.

sed commands
The sed program can perform text pattern substitutions and deletions using regular expressions, like the
ones used with the grep command; see the section called “Examples using grep”.

The editing commands are similar to the ones used in the vi editor:

Table 5.1. Sed editing commands

Command Result

a\ Append text below current line.

c\ Change text in the current line with new text.

d Delete text.

i\ Insert text above current line.

p Print text.

r Read a file.

s Search and replace text.

The GNU sed stream editor

64

Command Result

w Write to a file.

Apart from editing commands, you can give options to sed. An overview is in the table below:

Table 5.2. Sed options

Option Effect

-e SCRIPT Add the commands in SCRIPT to the set of com-
mands to be run while processing the input.

-f Add the commands contained in the file SCRIPT-
FILE to the set of commands to be run while pro-
cessing the input.

-n Silent mode.

-V Print version information and exit.

The sed info pages contain more information; we only list the most frequently used commands and options
here.

Interactive editing

Printing lines containing a pattern
This is something you can do with grep, of course, but you can't do a “find and replace” using that com-
mand. This is just to get you started.

This is our example text file:

sandy ~> cat -n example
 1 This is the first line of an example text.
 2 It is a text with erors.
 3 Lots of erors.
 4 So much erors, all these erors are making me sick.
 5 This is a line not containing any errors.
 6 This is the last line.

sandy ~>

We want sed to find all the lines containing our search pattern, in this case “erors”. We use the p to obtain
the result:

sandy ~> sed '/erors/p' example
This is the first line of an example text.
It is a text with erors.
It is a text with erors.
Lots of erors.
Lots of erors.
So much erors, all these erors are making me sick.
So much erors, all these erors are making me sick.
This is a line not containing any errors.

The GNU sed stream editor

65

This is the last line.

sandy ~>

As you notice, sed prints the entire file, but the lines containing the search string are printed twice. This
is not what we want. In order to only print those lines matching our pattern, use the -n option:

sandy ~> sed -n '/erors/p' example
It is a text with erors.
Lots of erors.
So much erors, all these erors are making me sick.

sandy ~>

Deleting lines of input containing a pattern
We use the same example text file. Now we only want to see the lines not containing the search string:

sandy ~> sed '/erors/d' example
This is the first line of an example text.
This is a line not containing any errors.
This is the last line.

sandy ~>

The d command results in excluding lines from being displayed.

Matching lines starting with a given pattern and ending in a second pattern are showed like this:

sandy ~> sed -n '/^This.*errors.$/p' example
This is a line not containing any errors.

sandy ~>

Note that the last dot needs to be escaped in order to actually match. In our example the expression just
matches any character, including the last dot.

Ranges of lines
This time we want to take out the lines containing the errors. In the example these are lines 2 to 4. Specify
this range to address, together with the d command:

sandy ~> sed '2,4d' example
This is the first line of an example text.
This is a line not containing any errors.
This is the last line.

sandy ~>

To print the file starting from a certain line until the end of the file, use a command similar to this:

The GNU sed stream editor

66

sandy ~> sed '3,$d' example
This is the first line of an example text.
It is a text with erors.

sandy ~>

This only prints the first two lines of the example file.

The following command prints the first line containing the pattern “a text”, up to and including the next
line containing the pattern “a line”:

sandy ~> sed -n '/a text/,/This/p' example
It is a text with erors.
Lots of erors.
So much erors, all these erors are making me sick.
This is a line not containing any errors.

sandy ~>

Find and replace with sed
In the example file, we will now search and replace the errors instead of only (de)selecting the lines
containing the search string.

sandy ~> sed 's/erors/errors/' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these erors are making me sick.
This is a line not containing any errors.
This is the last line.

sandy ~>

As you can see, this is not exactly the desired effect: in line 4, only the first occurrence of the search
string has been replaced, and there is still an 'eror' left. Use the g command to indicate to sed that it should
examine the entire line instead of stopping at the first occurrence of your string:

sandy ~> sed 's/erors/errors/g' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these errors are making me sick.
This is a line not containing any errors.
This is the last line.

sandy ~>

To insert a string at the beginning of each line of a file, for instance for quoting:

sandy ~> sed 's/^/> /' example

The GNU sed stream editor

67

> This is the first line of an example text.
> It is a text with erors.
> Lots of erors.
> So much erors, all these erors are making me sick.
> This is a line not containing any errors.
> This is the last line.

sandy ~>

Insert some string at the end of each line:

sandy ~> sed 's/$/EOL/' example
This is the first line of an example text.EOL
It is a text with erors.EOL
Lots of erors.EOL
So much erors, all these erors are making me sick.EOL
This is a line not containing any errors.EOL
This is the last line.EOL

sandy ~>

Multiple find and replace commands are separated with individual -e options:

sandy ~> sed -e 's/erors/errors/g' -e 's/last/final/g' example
This is the first line of an example text.
It is a text with errors.
Lots of errors.
So much errors, all these errors are making me sick.
This is a line not containing any errors.
This is the final line.

sandy ~>

Keep in mind that by default sed prints its results to the standard output, most likely your terminal window.
If you want to save the output to a file, redirect it:

sed option 'some/expression' file_to_process > sed_output_in_a_file

More examples

Plenty of sed examples can be found in the startup scripts for your machine, which are usually in
/etc/init.d or /etc/rc.d/init.d. Change into the directory containing the initscripts
on your system and issue the following command:

grep sed *

Non-interactive editing

Reading sed commands from a file
Multiple sed commands can be put in a file and executed using the -f option. When creating such a file,
make sure that:

The GNU sed stream editor

68

• No trailing white spaces exist at the end of lines.

• No quotes are used.

• When entering text to add or replace, all except the last line end in a backslash.

Writing output files
Writing output is done using the output redirection operator >. This is an example script used to create
very simple HTML files from plain text files.

sandy ~> cat script.sed
1i\
<html>\
<head><title>sed generated html</title></head>\
<body bgcolor="#ffffff">\
<pre>
$a\
</pre>\
</body>\
</html>

sandy ~> cat txt2html.sh
#!/bin/bash

This is a simple script that you can use for converting text into HTML.
First we take out all newline characters, so that the appending only happens
once, then we replace the newlines.

echo "converting $1..."

SCRIPT="/home/sandy/scripts/script.sed"
NAME="$1"
TEMPFILE="/var/tmp/sed.$PID.tmp"
sed "s/\n/^M/" $1 | sed -f $SCRIPT | sed "s/^M/\n/" > $TEMPFILE
mv $TEMPFILE $NAME

echo "done."

sandy ~>

$1 holds the first argument to a given command, in this case the name of the file to convert:

sandy ~> cat test
line1
line2
line3

More on positional parameters in Chapter 7, Conditional statements.

sandy ~> txt2html.sh test
converting test...

The GNU sed stream editor

69

done.

sandy ~> cat test
<html>
<head><title>sed generated html</title></head>
<body bgcolor="#ffffff">
<pre>
line1
line2
line3
</pre>
</body>
</html>

sandy ~>

This is not really how it is done; this example just demonstrates sed capabilities. See the section called
“Gawk variables” for a more decent solution to this problem, using awk BEGIN and END constructs.

Easy sed

Advanced editors, supporting syntax highlighting, can recognize sed syntax. This can be a great
help if you tend to forget backslashes and such.

Summary
The sed stream editor is a powerful command line tool, which can handle streams of data: it can take
input lines from a pipe. This makes it fit for non-interactive use. The sed editor uses vi-like commands
and accepts regular expressions.

The sed tool can read commands from the command line or from a script. It is often used to perform find-
and-replace actions on lines containing a pattern.

Exercises
These exercises are meant to further demonstrate what sed can do.

1. Print a list of files in your scripts directory, ending in “.sh”. Mind that you might have to unalias
ls. Put the result in a temporary file.

2. Make a list of files in /usr/bin that have the letter “a” as the second character. Put the result in a
temporary file.

3. Delete the first 3 lines of each temporary file.

4. Print to standard output only the lines containing the pattern “an”.

5. Create a file holding sed commands to perform the previous two tasks. Add an extra command to this
file that adds a string like “*** This might have something to do with man and man pages ***” in the
line preceding every occurence of the string “man”. Check the results.

6. A long listing of the root directory, /, is used for input. Create a file holding sed commands that check
for symbolic links and plain files. If a file is a symbolic link, precede it with a line like “--This is a

The GNU sed stream editor

70

symlink--”. If the file is a plain file, add a string on the same line, adding a comment like “<--- this
is a plain file”.

7. Create a script that shows lines containing trailing white spaces from a file. This script should use a sed
script and show sensible information to the user.

71

Chapter 6. The GNU awk programming
language
In this chapter we will discuss:

• What is gawk?

• Using gawk commands on the command line

• How to format text with gawk

• How gawk uses regular expressions

• Gawk in scripts

• Gawk and variables

To make it more fun

As with sed, entire books have been written about various versions of awk. This introduction is far from
complete and is only intended for understanding examples in the following chapters. For more information,
best start with the documentation that comes with GNU awk: “GAWK: Effective AWK Programming: A
User's Guide for GNU Awk”.

Getting started with gawk
What is gawk?

Gawk is the GNU version of the commonly available UNIX awk program, another popular stream editor.
Since the awk program is often just a link to gawk, we will refer to it as awk.

The basic function of awk is to search files for lines or other text units containing one or more patterns.
When a line matches one of the patterns, special actions are performed on that line.

Programs in awk are different from programs in most other languages, because awk programs are “da-
ta-driven”: you describe the data you want to work with and then what to do when you find it. Most other
languages are “procedural.” You have to describe, in great detail, every step the program is to take. When
working with procedural languages, it is usually much harder to clearly describe the data your program
will process. For this reason, awk programs are often refreshingly easy to read and write.

What does it really mean?

Back in the 1970s, three programmers got together to create this language. Their names were
Aho, Kernighan and Weinberger. They took the first character of each of their names and put
them together. So the name of the language might just as well have been “wak”.

Gawk commands
When you run awk, you specify an awk program that tells awk what to do. The program consists of a series
of rules. (It may also contain function definitions, loops, conditions and other programming constructs,
advanced features that we will ignore for now.) Each rule specifies one pattern to search for and one action
to perform upon finding the pattern.

There are several ways to run awk. If the program is short, it is easiest to run it on the command line:

The GNU awk programming language

72

awk PROGRAM inputfile(s)

If multiple changes have to be made, possibly regularly and on multiple files, it is easier to put the awk
commands in a script. This is read like this:

awk -f PROGRAM-FILE inputfile(s)

The print program

Printing selected fields
The print command in awk outputs selected data from the input file.

When awk reads a line of a file, it divides the line in fields based on the specified input field separator,
FS, which is an awk variable (see the section called “The output separators”). This variable is predefined
to be one or more spaces or tabs.

The variables $1, $2, $3, ..., $N hold the values of the first, second, third until the last field of an input
line. The variable $0 (zero) holds the value of the entire line. This is depicted in the image below, where
we see six colums in the output of the df command:

Figure 6.1. Fields in awk

The GNU awk programming language

73

In the output of ls -l, there are 9 columns. The print statement uses these fields as follows:

kelly@octarine ~/test> ls -l | awk '{ print $5 $9 }'
160orig
121script.sed
120temp_file
126test
120twolines
441txt2html.sh

kelly@octarine ~/test>

This command printed the fifth column of a long file listing, which contains the file size, and the last
column, the name of the file. This output is not very readable unless you use the official way of referring
to columns, which is to separate the ones that you want to print with a comma. In that case, the default
output separater character, usually a space, will be put in between each output field.

Local configuration

Note that the configuration of the output of the ls -l command might be different on your system.
Display of time and date is dependent on your locale setting.

Formatting fields
Without formatting, using only the output separator, the output looks rather poor. Inserting a couple of
tabs and a string to indicate what output this is will make it look a lot better:

kelly@octarine ~/test> ls -ldh * | grep -v total | \
awk '{ print "Size is " $5 " bytes for " $9 }'
Size is 160 bytes for orig
Size is 121 bytes for script.sed
Size is 120 bytes for temp_file
Size is 126 bytes for test
Size is 120 bytes for twolines
Size is 441 bytes for txt2html.sh

kelly@octarine ~/test>

Note the use of the backslash, which makes long input continue on the next line without the shell inter-
preting this as a separate command. While your command line input can be of virtually unlimited length,
your monitor is not, and printed paper certainly isn't. Using the backslash also allows for copying and
pasting of the above lines into a terminal window.

The -h option to ls is used for supplying humanly readable size formats for bigger files. The output of a
long listing displaying the total amount of blocks in the directory is given when a directory is the argument.
This line is useless to us, so we add an asterisk. We also add the -d option for the same reason, in case
asterisk expands to a directory.

The backslash in this example marks the continuation of a line. See the section called “Escape characters”.

You can take out any number of columns and even reverse the order. In the example below this is demon-
strated for showing the most critical partitions:

The GNU awk programming language

74

kelly@octarine ~> df -h | sort -rnk 5 | head -3 | \
awk '{ print "Partition " $6 "\t: " $5 " full!" }'
Partition /var : 86% full!
Partition /usr : 85% full!
Partition /home : 70% full!

kelly@octarine ~>

The table below gives an overview of special formatting characters:

Table 6.1. Formatting characters for gawk

Sequence Meaning

\a Bell character

\n Newline character

\t Tab

Quotes, dollar signs and other meta-characters should be escaped with a backslash.

The print command and regular expressions
A regular expression can be used as a pattern by enclosing it in slashes. The regular expression is then
tested against the entire text of each record. The syntax is as follows:

awk 'EXPRESSION { PROGRAM }' file(s)

The following example displays only local disk device information, networked file systems are not shown:

kelly is in ~> df -h | awk '/dev\/hd/ { print $6 "\t: " $5 }'
/ : 46%
/boot : 10%
/opt : 84%
/usr : 97%
/var : 73%
/.vol1 : 8%

kelly is in ~>

Slashes need to be escaped, because they have a special meaning to the awk program.

Below another example where we search the /etc directory for files ending in “.conf” and starting with
either “a” or “x”, using extended regular expressions:

kelly is in /etc> ls -l | awk '/\<(a|x).*\.conf$/ { print $9 }'
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf

kelly is in /etc>

The GNU awk programming language

75

This example illustrates the special meaning of the dot in regular expressions: the first one indicates that
we want to search for any character after the first search string, the second is escaped because it is part
of a string to find (the end of the file name).

Special patterns
In order to precede output with comments, use the BEGIN statement:

kelly is in /etc> ls -l | \
awk 'BEGIN { print "Files found:\n" } /\<[a|x].*\.conf$/ { print $9 }'
Files found:
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf

kelly is in /etc>

The END statement can be added for inserting text after the entire input is processed:

kelly is in /etc> ls -l | \
awk '/\<[a|x].*\.conf$/ { print $9 } END { print \
"Can I do anything else for you, mistress?" }'
amd.conf
antivir.conf
xcdroast.conf
xinetd.conf
Can I do anything else for you, mistress?

kelly is in /etc>

Gawk scripts
As commands tend to get a little longer, you might want to put them in a script, so they are reusable. An
awk script contains awk statements defining patterns and actions.

As an illustration, we will build a report that displays our most loaded partitions. See the section called
“Formatting fields”.

kelly is in ~> cat diskrep.awk
BEGIN { print "*** WARNING WARNING WARNING ***" }
/\<[8|9][0-9]%/ { print "Partition " $6 "\t: " $5 " full!" }
END { print "*** Give money for new disks URGENTLY! ***" }

kelly is in ~> df -h | awk -f diskrep.awk
*** WARNING WARNING WARNING ***
Partition /usr : 97% full!
*** Give money for new disks URGENTLY! ***

kelly is in ~>

The GNU awk programming language

76

awk first prints a begin message, then formats all the lines that contain an eight or a nine at the beginning
of a word, followed by one other number and a percentage sign. An end message is added.

Syntax highlighting

Awk is a programming language. Its syntax is recognized by most editors that can do syntax
highlighting for other languages, such as C, Bash, HTML, etc.

Gawk variables
As awk is processing the input file, it uses several variables. Some are editable, some are read-only.

The input field separator
The field separator, which is either a single character or a regular expression, controls the way awk splits
up an input record into fields. The input record is scanned for character sequences that match the separator
definition; the fields themselves are the text between the matches.

The field separator is represented by the built-in variable FS. Note that this is something different from
the IFS variable used by POSIX-compliant shells.

The value of the field separator variable can be changed in the awk program with the assignment operator
=. Often the right time to do this is at the beginning of execution before any input has been processed, so
that the very first record is read with the proper separator. To do this, use the special BEGIN pattern.

In the example below, we build a command that displays all the users on your system with a description:

kelly is in ~> awk 'BEGIN { FS=":" } { print $1 "\t" $5 }' /etc/passwd
--output omitted--
kelly Kelly Smith
franky Franky B.
eddy Eddy White
willy William Black
cathy Catherine the Great
sandy Sandy Li Wong

kelly is in ~>

In an awk script, it would look like this:

kelly is in ~> cat printnames.awk
BEGIN { FS=":" }
{ print $1 "\t" $5 }

kelly is in ~> awk -f printnames.awk /etc/passwd
--output omitted--

Choose input field separators carefully to prevent problems. An example to illustrate this: say you get
input in the form of lines that look like this:

“Sandy L. Wong, 64 Zoo St., Antwerp, 2000X”

You write a command line or a script, which prints out the name of the person in that record:

The GNU awk programming language

77

awk 'BEGIN { FS="," } { print $1, $2, $3 }' inputfile

But a person might have a PhD, and it might be written like this:

“Sandy L. Wong, PhD, 64 Zoo St., Antwerp, 2000X”

Your awk will give the wrong output for this line. If needed, use an extra awk or sed to uniform data
input formats.

The default input field separator is one or more whitespaces or tabs.

The output separators

The output field separator

Fields are normally separated by spaces in the output. This becomes apparent when you use the correct
syntax for the print command, where arguments are separated by commas:

kelly@octarine ~/test> cat test
record1 data1
record2 data2

kelly@octarine ~/test> awk '{ print $1 $2}' test
record1data1
record2data2

kelly@octarine ~/test> awk '{ print $1, $2}' test
record1 data1
record2 data2

kelly@octarine ~/test>

If you don't put in the commas, print will treat the items to output as one argument, thus omitting the use
of the default output separator, OFS.

Any character string may be used as the output field separator by setting this built-in variable.

The output record separator

The output from an entire print statement is called an output record. Each print command results in one
output record, and then outputs a string called the output record separator, ORS. The default value for this
variable is “\n”, a newline character. Thus, each print statement generates a separate line.

To change the way output fields and records are separated, assign new values to OFS and ORS:

kelly@octarine ~/test> awk 'BEGIN { OFS=";" ; ORS="\n-->\n" } \
{ print $1,$2}' test
record1;data1
-->
record2;data2
-->

kelly@octarine ~/test>

The GNU awk programming language

78

If the value of ORS does not contain a newline, the program's output is run together on a single line.

The number of records
The built-in NR holds the number of records that are processed. It is incremented after reading a new input
line. You can use it at the end to count the total number of records, or in each output record:

kelly@octarine ~/test> cat processed.awk
BEGIN { OFS="-" ; ORS="\n--> done\n" }
{ print "Record number " NR ":\t" $1,$2 }
END { print "Number of records processed: " NR }

kelly@octarine ~/test> awk -f processed.awk test
Record number 1: record1-data1
--> done
Record number 2: record2-data2
--> done
Number of records processed: 2
--> done

kelly@octarine ~/test>

User defined variables
Apart from the built-in variables, you can define your own. When awk encounters a reference to a variable
which does not exist (which is not predefined), the variable is created and initialized to a null string. For
all subsequent references, the value of the variable is whatever value was assigned last. Variables can be
a string or a numeric value. Content of input fields can also be assigned to variables.

Values can be assigned directly using the = operator, or you can use the current value of the variable in
combination with other operators:

kelly@octarine ~> cat revenues
20021009 20021013 consultancy BigComp 2500
20021015 20021020 training EduComp 2000
20021112 20021123 appdev SmartComp 10000
20021204 20021215 training EduComp 5000

kelly@octarine ~> cat total.awk
{ total=total + $5 }
{ print "Send bill for " $5 " dollar to " $4 }
END { print "---------------------------------\nTotal revenue: " total }

kelly@octarine ~> awk -f total.awk test
Send bill for 2500 dollar to BigComp
Send bill for 2000 dollar to EduComp
Send bill for 10000 dollar to SmartComp
Send bill for 5000 dollar to EduComp

Total revenue: 19500

kelly@octarine ~>

The GNU awk programming language

79

C-like shorthands like VAR+= value are also accepted.

More examples
The example from the section called “Writing output files” becomes much easier when we use an awk
script:

kelly@octarine ~/html> cat make-html-from-text.awk
BEGIN { print "<html>\n<head><title>Awk-generated HTML</title></head>\n<body bgcolor=\"#ffffff\">\n<pre>" }
{ print $0 }
END { print "</pre>\n</body>\n</html>" }

And the command to execute is also much more straightforward when using awk instead of sed:

kelly@octarine ~/html> awk -f make-html-from-text.awk testfile > file.html

Awk examples on your system

We refer again to the directory containing the initscripts on your system. Enter a command similar
to the following to see more practical examples of the widely spread usage of the awk command:

grep awk /etc/init.d/*

The printf program
For more precise control over the output format than what is normally provided by print, use printf. The
printf command can be used to specify the field width to use for each item, as well as various formatting
choices for numbers (such as what output base to use, whether to print an exponent, whether to print a
sign, and how many digits to print after the decimal point). This is done by supplying a string, called the
format string, that controls how and where to print the other arguments.

The syntax is the same as for the C-language printf statement; see your C introduction guide. The gawk
info pages contain full explanations.

Summary
The gawk utility interprets a special-purpose programming language, handling simple data-reformatting
jobs with just a few lines of code. It is the free version of the general UNIX awk command.

This tools reads lines of input data and can easily recognize columned output. The print program is the
most common for filtering and formatting defined fields.

On-the-fly variable declaration is straightforward and allows for simple calculation of sums, statistics and
other operations on the processed input stream. Variables and commands can be put in awk scripts for
background processing.

Other things you should know about awk:

• The language remains well-known on UNIX and alikes, but for executing similar tasks, Perl is now
more commonly used. However, awk has a much steeper learning curve (meaning that you learn a lot
in a very short time). In other words, Perl is more difficult to learn.

The GNU awk programming language

80

• Both Perl and awk share the reputation of being incomprehensible, even to the actual authors of the
programs that use these languages. So document your code!

Exercises
These are some practical examples where awk can be useful.

1. For the first exercise, your input is lines in the following form:

Username:Firstname:Lastname:Telephone number

Make an awk script that will convert such a line to an LDAP record in this format:

dn: uid=Username, dc=example, dc=com
cn: Firstname Lastname
sn: Lastname
telephoneNumber: Telephone number

Create a file containing a couple of test records and check.

2. Create a Bash script using awk and standard UNIX commands that will show the top three users of
disk space in the /home file system (if you don't have the directory holding the homes on a separate
partition, make the script for the / partition; this is present on every UNIX system). First, execute the
commands from the command line. Then put them in a script. The script should create sensible output
(sensible as in readable by the boss). If everything proves to work, have the script email its results to
you (use for instance mail -s Disk space usage <you@your_comp> < result).

If the quota daemon is running, use that information; if not, use find.

3. Create XML-style output from a Tab-separated list in the following form:

Meaning very long line with a lot of description

meaning another long line

othermeaning more longline

testmeaning looong line, but i mean really looong.

The output should read:

<row>
<entry>Meaning</entry>
<entry>
very long line
</entry>
</row>
<row>
<entry>meaning</entry>
<entry>
long line

The GNU awk programming language

81

</entry>
</row>
<row>
<entryothermeaning</entry>
<entry>
more longline
</entry>
</row>
<row>
<entrytestmeaning</entry>
<entry>
looong line, but i mean really looong.
</entry>
</row>

Additionally, if you know anything about XML, write a BEGIN and END script to complete the table.
Or do it in HTML.

82

Chapter 7. Conditional statements
In this chapter we will discuss the use of conditionals in Bash scripts. This includes the following topics:

• The if statement

• Using the exit status of a command

• Comparing and testing input and files

• if/then/else constructs

• if/then/elif/else constructs

• Using and testing the positional parameters

• Nested if statements

• Boolean expressions

• Using case statements

Introduction to if
General

At times you need to specify different courses of action to be taken in a shell script, depending on the
success or failure of a command. The if construction allows you to specify such conditions.

The most compact syntax of the if command is:

if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi

The TEST-COMMAND list is executed, and if its return status is zero, the CONSEQUENT-COM-
MANDS list is executed. The return status is the exit status of the last command executed, or zero if no
condition tested true.

The TEST-COMMAND often involves numerical or string comparison tests, but it can also be any com-
mand that returns a status of zero when it succeeds and some other status when it fails. Unary expressions
are often used to examine the status of a file. If the FILE argument to one of the primaries is of the form /
dev/fd/N, then file descriptor “N” is checked. stdin, stdout and stderr and their respective file
descriptors may also be used for tests.

Expressions used with if

The table below contains an overview of the so-called “primaries” that make up the TEST-COMMAND
command or list of commands. These primaries are put between square brackets to indicate the test of a
conditional expression.

Table 7.1. Primary expressions

Primary Meaning

[-a FILE] True if FILE exists.

[-b FILE] True if FILE exists and is a block-special file.

[-c FILE] True if FILE exists and is a character-special file.

Conditional statements

83

Primary Meaning

[-d FILE] True if FILE exists and is a directory.

[-e FILE] True if FILE exists.

[-f FILE] True if FILE exists and is a regular file.

[-g FILE] True if FILE exists and its SGID bit is set.

[-h FILE] True if FILE exists and is a symbolic link.

[-k FILE] True if FILE exists and its sticky bit is set.

[-p FILE] True if FILE exists and is a named pipe (FIFO).

[-r FILE] True if FILE exists and is readable.

[-s FILE] True if FILE exists and has a size greater than ze-
ro.

[-t FD] True if file descriptor FD is open and refers to a
terminal.

[-u FILE] True if FILE exists and its SUID (set user ID) bit
is set.

[-w FILE] True if FILE exists and is writable.

[-x FILE] True if FILE exists and is executable.

[-O FILE] True if FILE exists and is owned by the effective
user ID.

[-G FILE] True if FILE exists and is owned by the effective
group ID.

[-L FILE] True if FILE exists and is a symbolic link.

[-N FILE] True if FILE exists and has been modified since it
was last read.

[-S FILE] True if FILE exists and is a socket.

[FILE1 -nt FILE2] True if FILE1 has been changed more recently
than FILE2, or if FILE1 exists and FILE2 does
not.

[FILE1 -ot FILE2] True if FILE1 is older than FILE2, or is FILE2
exists and FILE1 does not.

[FILE1 -ef FILE2] True if FILE1 and FILE2 refer to the same de-
vice and inode numbers.

[-o OPTIONNAME] True if shell option “OPTIONNAME” is enabled.

[-z STRING] True if the length of “STRING” is zero.

[-n STRING] or [STRING] True if the length of “STRING” is non-zero.

[STRING1 == STRING2] True if the strings are equal. “=” may be used in-
stead of “==” for strict POSIX compliance.

[STRING1 != STRING2] True if the strings are not equal.

[STRING1 < STRING2] True if “STRING1” sorts before “STRING2” lexi-
cographically in the current locale.

[STRING1 > STRING2] True if “STRING1” sorts after “STRING2” lexico-
graphically in the current locale.

Conditional statements

84

Primary Meaning

[ARG1 OP ARG2] “OP” is one of -eq, -ne, -lt, -le, -gt or -
ge. These arithmetic binary operators return true
if “ARG1” is equal to, not equal to, less than,
less than or equal to, greater than, or greater than
or equal to “ARG2”, respectively. “ARG1” and
“ARG2” are integers.

Expressions may be combined using the following operators, listed in decreasing order of precedence:

Table 7.2. Combining expressions

Operation Effect

[! EXPR] True if EXPR is false.

[(EXPR)] Returns the value of EXPR. This may be used to
override the normal precedence of operators.

[EXPR1 -a EXPR2] True if both EXPR1 and EXPR2 are true.

[EXPR1 -o EXPR2] True if either EXPR1 or EXPR2 is true.

The [(or test) built-in evaluates conditional expressions using a set of rules based on the number of ar-
guments. More information about this subject can be found in the Bash documentation. Just like the if is
closed with fi, the opening square bracket should be closed after the conditions have been listed.

Commands following the then statement

The CONSEQUENT-COMMANDS list that follows the then statement can be any valid UNIX com-
mand, any executable program, any executable shell script or any shell statement, with the exception of
the closing fi. It is important to remember that the then and fi are considered to be separated statements
in the shell. Therefore, when issued on the command line, they are separated by a semi-colon.

In a script, the different parts of the if statement are usually well-separated. Below, a couple of simple
examples.

Checking files

The first example checks for the existence of a file:

anny ~> cat msgcheck.sh
#!/bin/bash

echo "This scripts checks the existence of the messages file."
echo "Checking..."
if [-f /var/log/messages]
 then
 echo "/var/log/messages exists."
fi
echo
echo "...done."

anny ~> ./msgcheck.sh
This scripts checks the existence of the messages file.

Conditional statements

85

Checking...
/var/log/messages exists.

...done.

Checking shell options

To add in your Bash configuration files:

These lines will print a message if the noclobber option is set:

if [-o noclobber]
 then
 echo "Your files are protected against accidental overwriting using redirection."
fi

The environment

The above example will work when entered on the command line:

anny ~> if [-o noclobber] ; then echo ; echo "your files are protected
against overwriting." ; echo ; fi

your files are protected against overwriting.

anny ~>

However, if you use testing of conditions that depend on the environment, you might get different
results when you enter the same command in a script, because the script will open a new shell,
in which expected variables and options might not be set automatically.

Simple applications of if

Testing exit status

The ? variable holds the exit status of the previously executed command (the most recently completed
foreground process).

The following example shows a simple test:

anny ~> if [$? -eq 0]
More input> then echo 'That was a good job!'
More input> fi
That was a good job!

anny ~>

The following example demonstrates that TEST-COMMANDS might be any UNIX command that re-
turns an exit status, and that if again returns an exit status of zero:

Conditional statements

86

anny ~> if ! grep $USER /etc/passwd
More input> then echo "your user account is not managed locally"; fi
your user account is not managed locally

anny > echo $?
0

anny >

The same result can be obtained as follows:

anny > grep $USER /etc/passwd

anny > if [$? -ne 0] ; then echo "not a local account" ; fi
not a local account

anny >

Numeric comparisons

The examples below use numerical comparisons:

anny > num=`wc -l work.txt`

anny > echo $num
201

anny > if ["$num" -gt "150"]
More input> then echo ; echo "you've worked hard enough for today."
More input> echo ; fi

you've worked hard enough for today.

anny >

This script is executed by cron every Sunday. If the week number is even, it reminds you to put out the
garbage cans:

#!/bin/bash

Calculate the week number using the date command:

WEEKOFFSET=$[$(date +"%V") % 2]

Test if we have a remainder. If not, this is an even week so send a message.
Else, do nothing.

if [$WEEKOFFSET -eq "0"]; then
 echo "Sunday evening, put out the garbage cans." | mail -s "Garbage cans out" your@your_domain.org
fi

Conditional statements

87

String comparisons

An example of comparing strings for testing the user ID:

if ["$(whoami)" != 'root']; then
 echo "You have no permission to run $0 as non-root user."
 exit 1;
fi

With Bash, you can shorten this type of construct. The compact equivalent of the above test is as follows:

["$(whoami)" != 'root'] && (echo you are using a non-privileged account; exit 1)

Similar to the “&&” expression which indicates what to do if the test proves true, “||” specifies what to
do if the test is false.

Regular expressions may also be used in comparisons:

anny > gender="female"

anny > if [["$gender" == f*]]
More input> then echo "Pleasure to meet you, Madame."; fi
Pleasure to meet you, Madame.

anny >

Real Programmers

Most programmers will prefer to use the test built-in command, which is equivalent to using
square brackets for comparison, like this:

test "$(whoami)" != 'root' && (echo you are using a non-privileged account; exit 1)

No exit?

If you invoke the exit in a subshell, it will not pass variables to the parent. Use { and } instead
of (and) if you do not want Bash to fork a subshell.

See the info pages for Bash for more information on pattern matching with the “((EXPRESSION))” and
“[[EXPRESSION]]” constructs.

More advanced if usage

if/then/else constructs

Dummy example

This is the construct to use to take one course of action if the if commands test true, and another if it tests
false. An example:

Conditional statements

88

freddy scripts> gender="male"

freddy scripts> if [["$gender" == "f*"]]
More input> then echo "Pleasure to meet you, Madame."
More input> else echo "How come the lady hasn't got a drink yet?"
More input> fi
How come the lady hasn't got a drink yet?

freddy scripts>

[] vs. [[]]

Contrary to [, [[prevents word splitting of variable values. So, if VAR="var with spaces",
you do not need to double quote $VAR in a test - eventhough using quotes remains a good habit.
Also, [[prevents pathname expansion, so literal strings with wildcards do not try to expand to
filenames. Using [[, == and != interpret strings to the right as shell glob patterns to be matched
against the value to the left, for instance: [["value" == val*]].

Like the CONSEQUENT-COMMANDS list following the then statement, the ALTERNATE-CONSE-
QUENT-COMMANDS list following the else statement can hold any UNIX-style command that returns
an exit status.

Another example, extending the one from the section called “Testing exit status”:

anny ~> su -
Password:
[root@elegance root]# if ! grep ^$USER /etc/passwd 1> /dev/null
> then echo "your user account is not managed locally"
> else echo "your account is managed from the local /etc/passwd file"
> fi
your account is managed from the local /etc/passwd file
[root@elegance root]#

We switch to the root account to demonstrate the effect of the else statement - your root is usually a local
account while your own user account might be managed by a central system, such as an LDAP server.

Checking command line arguments

Instead of setting a variable and then executing a script, it is frequently more elegant to put the values for
the variables on the command line.

We use the positional parameters $1, $2, ..., $N for this purpose. $# refers to the number of command
line arguments. $0 refers to the name of the script.

The following is a simple example:

Conditional statements

89

Figure 7.1. Testing of a command line argument with if

Here's another example, using two arguments:

anny ~> cat weight.sh
#!/bin/bash

This script prints a message about your weight if you give it your
weight in kilos and height in centimeters.

weight="$1"
height="$2"
idealweight=$[$height - 110]

if [$weight -le $idealweight] ; then
 echo "You should eat a bit more fat."
else
 echo "You should eat a bit more fruit."
fi

anny ~> bash -x weight.sh 55 169
+ weight=55

Conditional statements

90

+ height=169
+ idealweight=59
+ '[' 55 -le 59 ']'
+ echo 'You should eat a bit more fat.'
You should eat a bit more fat.

Testing the number of arguments

The following example shows how to change the previous script so that it prints a message if more or less
than 2 arguments are given:

anny ~> cat weight.sh
#!/bin/bash

This script prints a message about your weight if you give it your
weight in kilos and height in centimeters.

if [! $# == 2]; then
 echo "Usage: $0 weight_in_kilos length_in_centimeters"
 exit
fi

weight="$1"
height="$2"
idealweight=$[$height - 110]

if [$weight -le $idealweight] ; then
 echo "You should eat a bit more fat."
else
 echo "You should eat a bit more fruit."
fi

anny ~> weight.sh 70 150
You should eat a bit more fruit.

anny ~> weight.sh 70 150 33
Usage: ./weight.sh weight_in_kilos length_in_centimeters

The first argument is referred to as $1, the second as $2 and so on. The total number of arguments is
stored in $#.

Check out the section called “Using the exit statement and if” for a more elegant way to print usage
messages.

Testing that a file exists

This test is done in a lot of scripts, because there's no use in starting a lot of programs if you know they're
not going to work:

#!/bin/bash

This script gives information about a file.

Conditional statements

91

FILENAME="$1"

echo "Properties for $FILENAME:"

if [-f $FILENAME]; then
 echo "Size is $(ls -lh $FILENAME | awk '{ print $5 }')"
 echo "Type is $(file $FILENAME | cut -d":" -f2 -)"
 echo "Inode number is $(ls -i $FILENAME | cut -d" " -f1 -)"
 echo "$(df -h $FILENAME | grep -v Mounted | awk '{ print "On",$1", \
which is mounted as the",$6,"partition."}')"
else
 echo "File does not exist."
fi

Note that the file is referred to using a variable; in this case it is the first argument to the script. Alternatively,
when no arguments are given, file locations are usually stored in variables at the beginning of a script, and
their content is referred to using these variables. Thus, when you want to change a file name in a script,
you only need to do it once.

Filenames with spaces

The above example will fail if the value of $1 can be parsed as multiple words. In that case,
the if command can be fixed either using double quotes around the filename, or by using [[
instead of [.

if/then/elif/else constructs

General

This is the full form of the if statement:

if TEST-COMMANDS; then

CONSEQUENT-COMMANDS;

elif MORE-TEST-COMMANDS; then

MORE-CONSEQUENT-COMMANDS;

else ALTERNATE-CONSEQUENT-COMMANDS;

fi

The TEST-COMMANDS list is executed, and if its return status is zero, the CONSEQUENT-COM-
MANDS list is executed. If TEST-COMMANDS returns a non-zero status, each elif list is executed
in turn, and if its exit status is zero, the corresponding MORE-CONSEQUENT-COMMANDS is ex-
ecuted and the command completes. If else is followed by an ALTERNATE-CONSEQUENT-COM-
MANDS list, and the final command in the final if or elif clause has a non-zero exit status, then ALTER-
NATE-CONSEQUENT-COMMANDS is executed. The return status is the exit status of the last com-
mand executed, or zero if no condition tested true.

Example

This is an example that you can put in your crontab for daily execution:

Conditional statements

92

anny /etc/cron.daily> cat disktest.sh
#!/bin/bash

This script does a very simple test for checking disk space.

space=`df -h | awk '{print $5}' | grep % | grep -v Use | sort -n | tail -1 | cut -d "%" -f1 -`
alertvalue="80"

if ["$space" -ge "$alertvalue"]; then
 echo "At least one of my disks is nearly full!" | mail -s "daily diskcheck" root
else
 echo "Disk space normal" | mail -s "daily diskcheck" root
fi

Nested if statements

Inside the if statement, you can use another if statement. You may use as many levels of nested ifs as you
can logically manage.

This is an example testing leap years:

anny ~/testdir> cat testleap.sh
#!/bin/bash
This script will test if we're in a leap year or not.

year=`date +%Y`

if [$[$year % 400] -eq "0"]; then
 echo "This is a leap year. February has 29 days."
elif [$[$year % 4] -eq 0]; then
 if [$[$year % 100] -ne 0]; then
 echo "This is a leap year, February has 29 days."
 else
 echo "This is not a leap year. February has 28 days."
 fi
else
 echo "This is not a leap year. February has 28 days."
fi

anny ~/testdir> date
Tue Jan 14 20:37:55 CET 2003

anny ~/testdir> testleap.sh
This is not a leap year.

Boolean operations

The above script can be shortened using the Boolean operators “AND” (&&) and “OR” (||).

Conditional statements

93

Figure 7.2. Example using Boolean operators

We use the double brackets for testing an arithmetic expression, see the section called “Arithmetic expan-
sion”. This is equivalent to the let statement. You will get stuck using square brackets here, if you try
something like $[$year % 400], because here, the square brackets don't represent an actual command by
themselves.

Among other editors, gvim is one of those supporting colour schemes according to the file format; such
editors are useful for detecting errors in your code.

Using the exit statement and if
We already briefly met the exit statement in the section called “Testing the number of arguments”. It ter-
minates execution of the entire script. It is most often used if the input requested from the user is incorrect,
if a statement did not run successfully or if some other error occurred.

The exit statement takes an optional argument. This argument is the integer exit status code, which is
passed back to the parent and stored in the $? variable.

A zero argument means that the script ran successfully. Any other value may be used by programmers to
pass back different messages to the parent, so that different actions can be taken according to failure or
success of the child process. If no argument is given to the exit command, the parent shell uses the current
value of the $? variable.

Below is an example with a slightly adapted penguin.sh script, which sends its exit status back to the
parent, feed.sh:

anny ~/testdir> cat penguin.sh
#!/bin/bash

Conditional statements

94

This script lets you present different menus to Tux. He will only be happy
when given a fish. We've also added a dolphin and (presumably) a camel.

if ["$menu" == "fish"]; then
 if ["$animal" == "penguin"]; then
 echo "Hmmmmmm fish... Tux happy!"
 elif ["$animal" == "dolphin"]; then
 echo "Pweetpeettreetppeterdepweet!"
 else
 echo "*prrrrrrrt*"
 fi
else
 if ["$animal" == "penguin"]; then
 echo "Tux don't like that. Tux wants fish!"
 exit 1
 elif ["$animal" == "dolphin"]; then
 echo "Pweepwishpeeterdepweet!"
 exit 2
 else
 echo "Will you read this sign?!"
 exit 3
 fi
fi

This script is called upon in the next one, which therefore exports its variables menu and animal:

anny ~/testdir> cat feed.sh
#!/bin/bash
This script acts upon the exit status given by penguin.sh

export menu="$1"
export animal="$2"

feed="/nethome/anny/testdir/penguin.sh"

$feed $menu $animal

case $? in

1)
 echo "Guard: You'd better give'm a fish, less they get violent..."
 ;;
2)
 echo "Guard: It's because of people like you that they are leaving earth all the time..."
 ;;
3)
 echo "Guard: Buy the food that the Zoo provides for the animals, you ***, how
do you think we survive?"
 ;;
*)
 echo "Guard: Don't forget the guide!"
 ;;

Conditional statements

95

esac

anny ~/testdir> ./feed.sh apple penguin
Tux don't like that. Tux wants fish!
Guard: You'd better give'm a fish, less they get violent...

As you can see, exit status codes can be chosen freely. Existing commands usually have a series of defined
codes; see the programmer's manual for each command for more information.

Using case statements

Simplified conditions
Nested if statements might be nice, but as soon as you are confronted with a couple of different possible
actions to take, they tend to confuse. For the more complex conditionals, use the case syntax:

case EXPRESSION in CASE1) COMMAND-LIST;; CASE2) COMMAND-LIST;; ...
CASEN) COMMAND-LIST;; esac

Each case is an expression matching a pattern. The commands in the COMMAND-LIST for the first
match are executed. The “|” symbol is used for separating multiple patterns, and the “)” operator terminates
a pattern list. Each case plus its according commands are called a clause. Each clause must be terminated
with “;;”. Each case statement is ended with the esac statement.

In the example, we demonstrate use of cases for sending a more selective warning message with the
disktest.sh script:

anny ~/testdir> cat disktest.sh
#!/bin/bash

This script does a very simple test for checking disk space.

space=`df -h | awk '{print $5}' | grep % | grep -v Use | sort -n | tail -1 | cut -d "%" -f1 -`

case $space in
[1-6]*)
 Message="All is quiet."
 ;;
[7-8]*)
 Message="Start thinking about cleaning out some stuff. There's a partition that is $space % full."
 ;;
9[1-8])
 Message="Better hurry with that new disk... One partition is $space % full."
 ;;
99)
 Message="I'm drowning here! There's a partition at $space %!"
 ;;
*)
 Message="I seem to be running with an nonexistent amount of disk space..."
 ;;
esac

echo $Message | mail -s "disk report `date`" anny

Conditional statements

96

anny ~/testdir>
You have new mail.

anny ~/testdir> tail -16 /var/spool/mail/anny
From anny@octarine Tue Jan 14 22:10:47 2003
Return-Path: <anny@octarine>
Received: from octarine (localhost [127.0.0.1])
 by octarine (8.12.5/8.12.5) with ESMTP id h0ELAlBG020414
 for <anny@octarine>; Tue, 14 Jan 2003 22:10:47 +0100
Received: (from anny@localhost)
 by octarine (8.12.5/8.12.5/Submit) id h0ELAltn020413
 for anny; Tue, 14 Jan 2003 22:10:47 +0100
Date: Tue, 14 Jan 2003 22:10:47 +0100
From: Anny <anny@octarine>
Message-Id: <200301142110.h0ELAltn020413@octarine>
To: anny@octarine
Subject: disk report Tue Jan 14 22:10:47 CET 2003

Start thinking about cleaning out some stuff. There's a partition that is 87 % full.

anny ~/testdir>

Of course you could have opened your mail program to check the results; this is just to demonstrate that
the script sends a decent mail with “To:”, “Subject:” and “From:” header lines.

Many more examples using case statements can be found in your system's init script directory. The startup
scripts use start and stop cases to run or stop system processes. A theoretical example can be found in
the next section.

Initscript example
Initscripts often make use of case statements for starting, stopping and querying system services. This is
an excerpt of the script that starts Anacron, a daemon that runs commands periodically with a frequency
specified in days.

case "$1" in
 start)
 start
 ;;

 stop)
 stop
 ;;

 status)
 status anacron
 ;;
 restart)
 stop
 start
 ;;
 condrestart)

Conditional statements

97

 if test "x`pidof anacron`" != x; then
 stop
 start
 fi
 ;;

 *)
 echo $"Usage: $0 {start|stop|restart|condrestart|status}"
 exit 1

esac

The tasks to execute in each case, such as stopping and starting the daemon, are defined in functions, which
are partially sourced from the /etc/rc.d/init.d/functions file. See Chapter 11, Functions for
more explanation.

Summary
In this chapter we learned how to build conditions into our scripts so that different actions can be undertaken
upon success or failure of a command. The actions can be determined using the if statement. This allows
you to perform arithmetic and string comparisons, and testing of exit code, input and files needed by the
script.

A simple if/then/fi test often preceeds commands in a shell script in order to prevent output generation, so
that the script can easily be run in the background or through the cron facility. More complex definitions
of conditions are usually put in a case statement.

Upon successful condition testing, the script can explicitly inform the parent using the exit 0 status. Upon
failure, any other number may be returned. Based on the return code, the parent program can take appro-
priate action.

Exercises
Here are some ideas to get you started using if in scripts:

1. Use an if/then/elif/else construct that prints information about the current month. The script should
print the number of days in this month, and give information about leap years if the current month is
February.

2. Do the same, using a case statement and an alternative use of the date command.

3. Modify /etc/profile so that you get a special greeting message when you connect to your system
as root.

4. Edit the leaptest.sh script from the section called “Boolean operations” so that it requires one
argument, the year. Test that exactly one argument is supplied.

5. Write a script called whichdaemon.sh that checks if the httpd and init daemons are running on
your system. If an httpd is running, the script should print a message like, “This machine is running
a web server.” Use ps to check on processes.

6. Write a script that makes a backup of your home directory on a remote machine using scp. The script
should report in a log file, for instance ~/log/homebackup.log. If you don't have a second ma-
chine to copy the backup to, use scp to test copying it to the localhost. This requires SSH keys between

Conditional statements

98

the two hosts, or else you have to supply a password. The creation of SSH keys is explained in man
ssh-keygen.

7. Adapt the script from the first example in the section called “Simplified conditions” to include the case
of exactly 90% disk space usage, and lower than 10% disk space usage.

The script should use tar cf for the creation of the backup and gzip or bzip2 for compressing the
.tar file. Put all filenames in variables. Put the name of the remote server and the remote directory in
a variable. This will make it easier to re-use the script or to make changes to it in the future.

The script should check for the existence of a compressed archive. If this exists, remove it first in order
to prevent output generation.

The script should also check for available diskspace. Keep in mind that at any given moment you could
have the data in your home directory, the data in the .tar file and the data in the compressed archive
all together on your disk. If there is not enough diskspace, exit with an error message in the log file.

The script should clean up the compressed archive before it exits.

99

Chapter 8. Writing interactive scripts
In this chapter we will discuss how to interact with the users of our scripts:

• Printing user friendly messages and explanations

• Catching user input

• Prompting for user input

• Using the file descriptors to read from and write to multiple files

Displaying user messages
Interactive or not?

Some scripts run without any interaction from the user at all. Advantages of non-interactive scripts include:

• The script runs in a predictable way every time.

• The script can run in the background.

Many scripts, however, require input from the user, or give output to the user as the script is running. The
advantages of interactive scripts are, among others:

• More flexible scripts can be built.

• Users can customize the script as it runs or make it behave in different ways.

• The script can report its progress as it runs.

When writing interactive scripts, never hold back on comments. A script that prints appropriate messages
is much more user-friendly and can be more easily debugged. A script might do a perfect job, but you will
get a whole lot of support calls if it does not inform the user about what it is doing. So include messages
that tell the user to wait for output because a calculation is being done. If possible, try to give an indication
of how long the user will have to wait. If the waiting should regularly take a long time when executing a
certain task, you might want to consider integrating some processing indication in the output of your script.

When prompting the user for input, it is also better to give too much than too little information about
the kind of data to be entered. This applies to the checking of arguments and the accompanying usage
message as well.

Bash has the echo and printf commands to provide comments for users, and although you should be
familiar with at least the use of echo by now, we will discuss some more examples in the next sections.

Using the echo built-in command
The echo built-in command outputs its arguments, separated by spaces and terminated with a newline
character. The return status is always zero. echo takes a couple of options:

• -e: interprets backslash-escaped characters.

• -n: suppresses the trailing newline.

As an example of adding comments, we will make the feed.sh and penguin.sh from the section
called “Checking command line arguments” a bit better:

Writing interactive scripts

100

michel ~/test> cat penguin.sh
#!/bin/bash

This script lets you present different menus to Tux. He will only be happy
when given a fish. To make it more fun, we added a couple more animals.

if ["$menu" == "fish"]; then
 if ["$animal" == "penguin"]; then
 echo -e "Hmmmmmm fish... Tux happy!\n"
 elif ["$animal" == "dolphin"]; then
 echo -e "\a\a\aPweetpeettreetppeterdepweet!\a\a\a\n"
 else
 echo -e "*prrrrrrrt*\n"
 fi
else
 if ["$animal" == "penguin"]; then
 echo -e "Tux don't like that. Tux wants fish!\n"
 exit 1
 elif ["$animal" == "dolphin"]; then
 echo -e "\a\a\a\a\a\aPweepwishpeeterdepweet!\a\a\a"
 exit 2
 else
 echo -e "Will you read this sign?! Don't feed the "$animal"s!\n"
 exit 3
 fi
fi

michel ~/test> cat feed.sh
#!/bin/bash
This script acts upon the exit status given by penguin.sh

if ["$#" != "2"]; then
 echo -e "Usage of the feed script:\t$0 food-on-menu animal-name\n"
 exit 1
else

 export menu="$1"
 export animal="$2"

 echo -e "Feeding $menu to $animal...\n"

 feed="/nethome/anny/testdir/penguin.sh"

 $feed $menu $animal

result="$?"

 echo -e "Done feeding.\n"

case "$result" in

 1)
 echo -e "Guard: \"You'd better give'm a fish, less they get violent...\"\n"

Writing interactive scripts

101

 ;;
 2)
 echo -e "Guard: \"No wonder they flee our planet...\"\n"
 ;;
 3)
 echo -e "Guard: \"Buy the food that the Zoo provides at the entry, you ***\"\n"
 echo -e "Guard: \"You want to poison them, do you?\"\n"
 ;;
 *)
 echo -e "Guard: \"Don't forget the guide!\"\n"
 ;;
 esac

fi

echo "Leaving..."
echo -e "\a\a\aThanks for visiting the Zoo, hope to see you again soon!\n"

michel ~/test> feed.sh apple camel
Feeding apple to camel...

Will you read this sign?! Don't feed the camels!

Done feeding.

Guard: "Buy the food that the Zoo provides at the entry, you ***"

Guard: "You want to poison them, do you?"

Leaving...
Thanks for visiting the Zoo, hope to see you again soon!

michel ~/test> feed.sh apple
Usage of the feed script: ./feed.sh food-on-menu animal-name

More about escape characters can be found in the section called “Escape characters”. The following table
gives an overview of sequences recognized by the echo command:

Table 8.1. Escape sequences used by the echo command

Sequence Meaning

\a Alert (bell).

\b Backspace.

\c Suppress trailing newline.

\e Escape.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

Writing interactive scripts

102

Sequence Meaning

\\ Backslash.

\0NNN The eight-bit character whose value is the octal
value NNN (zero to three octal digits).

\NNN The eight-bit character whose value is the octal
value NNN (one to three octal digits).

\xHH The eight-bit character whose value is the hexa-
decimal value (one or two hexadecimal digits).

For more information about the printf command and the way it allows you to format output, see the Bash
info pages. Keep in mind that there might be differences between different versions of Bash.

Catching user input

Using the read built-in command
The read built-in command is the counterpart of the echo and printf commands. The syntax of the read
command is as follows:

read [options] NAME1 NAME2 ... NAMEN

One line is read from the standard input, or from the file descriptor supplied as an argument to the -u
option. The first word of the line is assigned to the first name, NAME1, the second word to the second
name, and so on, with leftover words and their intervening separators assigned to the last name, NAMEN. If
there are fewer words read from the input stream than there are names, the remaining names are assigned
empty values.

The characters in the value of the IFS variable are used to split the input line into words or tokens; see
the section called “Word splitting”. The backslash character may be used to remove any special meaning
for the next character read and for line continuation.

If no names are supplied, the line read is assigned to the variable REPLY.

The return code of the read command is zero, unless an end-of-file character is encountered, if read times
out or if an invalid file descriptor is supplied as the argument to the -u option.

The following options are supported by the Bash read built-in:

Table 8.2. Options to the read built-in

Option Meaning

-a ANAME The words are assigned to sequential indexes of
the array variable ANAME, starting at 0. All ele-
ments are removed from ANAME before the assign-
ment. Other NAME arguments are ignored.

-d DELIM The first character of DELIM is used to terminate
the input line, rather than newline.

-e readline is used to obtain the line.

-n NCHARS read returns after reading NCHARS characters
rather than waiting for a complete line of input.

Writing interactive scripts

103

Option Meaning

-p PROMPT Display PROMPT, without a trailing newline, be-
fore attempting to read any input. The prompt is
displayed only if input is coming from a terminal.

-r If this option is given, backslash does not act as an
escape character. The backslash is considered to be
part of the line. In particular, a backslash-newline
pair may not be used as a line continuation.

-s Silent mode. If input is coming from a terminal,
characters are not echoed.

-t TIMEOUT Cause read to time out and return failure if a com-
plete line of input is not read within TIMEOUT
seconds. This option has no effect if read is not
reading input from the terminal or from a pipe.

-u FD Read input from file descriptor FD.

This is a straightforward example, improving on the leaptest.sh script from the previous chapter:

michel ~/test> cat leaptest.sh
#!/bin/bash
This script will test if you have given a leap year or not.

echo "Type the year that you want to check (4 digits), followed by [ENTER]:"

read year

if ((("$year" % 400) == "0")) || ((("$year" % 4 == "0") && ("$year" % 100 !=
"0"))); then
 echo "$year is a leap year."
else
 echo "This is not a leap year."
fi

michel ~/test> leaptest.sh
Type the year that you want to check (4 digits), followed by [ENTER]:
2000
2000 is a leap year.

Prompting for user input
The following example shows how you can use prompts to explain what the user should enter.

michel ~/test> cat books.sh
#!/bin/bash

This is a program that creates a favorite book library.

books="books.txt"

echo "Hello, "$USER". This script will add your favorite book to the database."

Writing interactive scripts

104

echo -n "Enter the title and press [ENTER]: "
read title
echo -n "Enter the name of the author and press [ENTER]: "
read author
echo

grep -i "$title" "$books"

if [$? == 0]; then
 echo "You have already suggested a book, quitting."
 exit 1
elif ["$author" == "shakespeare"]; then
 echo "What's in a name? That which we call a rose by any other name would smell as sweet."
 exit 1
else
 echo -n "Enter the cost and press [ENTER]: "
 read cost
 if [$cost -lt 25]; then
 echo "$title | $author | $cost" >> "$books"
 echo "Your book is added to the database. Thank you so much!"
 else
 echo "Let me look for $title by $author at the library."
 exit 1
 fi
fi

michel ~/test> cp books.sh /var/tmp; cd /var/tmp

michel ~/test> touch books; chmod a+w books

michel ~/test> books.sh
Hello, michel. This script will add your favorite book to the database.
Enter the title and press [ENTER]: 1984
Enter the name of the author and press [ENTER]: Orwell
Enter the cost and press [ENTER]: 30
Let me look for 1984 by Orwell at the library.

michel ~/test> cat books

Note that no output is omitted here. The script only stores information about the books that Michel is
interested in. It will always thank you for your suggestion, unless you already provided it.

Other people can now start executing the script:

[anny@octarine tmp]$ books.sh
Hello, anny. This script will add your favorite book to the database.
Enter the title and press [ENTER]: Sense and Sensibility
Enter the name of the author and press [ENTER]: Austen
Enter the cost and press [ENTER]: 10
Your book is added to the database. Thank you so much!

After a while, the books list begins to look like this:

Writing interactive scripts

105

Sense and Sensibility | Austen | 10
Harry Potter and the Sorcerer's Stone | Rowling | 20
The Lord of the Rings | Tolkien | 22
To Kill a Mockingbird | Lee | 12

--output omitted--

Of course, this situation is not ideal, since everybody can edit (but not delete) Michel's files. You can solve
this problem using special access modes on the script file, see SUID and SGID [http://www.tldp.org/LDP/
intro-linux/html/sect_04_01.html#sect_04_01_06] in the Introduction to Linux guide.

Redirection and file descriptors

General

As you know from basic shell usage, input and output of a command may be redirected before it is executed,
using a special notation - the redirection operators - interpreted by the shell. Redirection may also be used
to open and close files for the current shell execution environment.

Redirection can also occur in a script, so that it can receive input from a file, for instance, or send output
to a file. Later, the user can review the output file, or it may be used by another script as input.

File input and output are accomplished by integer handles that track all open files for a given process.
These numeric values are known as file descriptors. The best known file descriptors are stdin, stdout and
stderr, with file descriptor numbers 0, 1 and 2, respectively. These numbers and respective devices are
reserved. Bash can take TCP or UDP ports on networked hosts as file descriptors as well.

The output below shows how the reserved file descriptors point to actual devices:

michel ~> ls -l /dev/std*
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stderr -> ../proc/self/fd/2
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stdin -> ../proc/self/fd/0
lrwxrwxrwx 1 root root 17 Oct 2 07:46 /dev/stdout -> ../proc/self/fd/1

michel ~> ls -l /proc/self/fd/[0-2]
lrwx------ 1 michel michel 64 Jan 23 12:11 /proc/self/fd/0 -> /dev/pts/6
lrwx------ 1 michel michel 64 Jan 23 12:11 /proc/self/fd/1 -> /dev/pts/6
lrwx------ 1 michel michel 64 Jan 23 12:11 /proc/self/fd/2 -> /dev/pts/6

Note that each process has its own view of the files under /proc/self, as it is actually a symbolic link
to /proc/<process_ID>.

You might want to check info MAKEDEV and info proc for more information about /proc subdirec-
tories and the way your system handles standard file descriptors for each running process.

When excuting a given command, the following steps are excuted, in order:

• If the standard output of a previous command is being piped to the standard input of the current com-
mand, then /proc/<current_process_ID>/fd/0 is updated to target the same anonymous pipe
as /proc/<previous_process_ID/fd/1.

• If the standard output of the current command is being piped to the standard input of the next command,
then /proc/<current_process_ID>/fd/1 is updated to target another anonymous pipe.

http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06
http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06
http://www.tldp.org/LDP/intro-linux/html/sect_04_01.html#sect_04_01_06

Writing interactive scripts

106

• Redirection for the current command is processed from left to right.

• Redirection “N>&M” or “N<&M” after a command has the effect of creating or updating the symbolic
link /proc/self/fd/N with the same target as the symbolic link /proc/self/fd/M.

• The redirections “N> file” and “N< file” have the effect of creating or updating the symbolic link /
proc/self/fd/N with the target file.

• File descriptor closure “N>&-” has the effect of deleting the symbolic link /proc/self/fd/N.

• Only now is the current command executed.

When you run a script from the command line, nothing much changes because the child shell process will
use the same file descriptors as the parent. When no such parent is available, for instance when you run
a script using the cron facility, the standard file descriptors are pipes or other (temporary) files, unless
some form of redirection is used. This is demonstrated in the example below, which shows output from
a simple at script:

michel ~> date
Fri Jan 24 11:05:50 CET 2003

michel ~> at 1107
warning: commands will be executed using (in order)
a) $SHELL b) login shell c)/bin/sh
at> ls -l /proc/self/fd/ > /var/tmp/fdtest.at
at> <EOT>
job 10 at 2003-01-24 11:07

michel ~> cat /var/tmp/fdtest.at
total 0
lr-x------ 1 michel michel 64 Jan 24 11:07 0 -> /var/spool/at/!0000c010959eb (deleted)
l-wx------ 1 michel michel 64 Jan 24 11:07 1 -> /var/tmp/fdtest.at
l-wx------ 1 michel michel 64 Jan 24 11:07 2 -> /var/spool/at/spool/a0000c010959eb
lr-x------ 1 michel michel 64 Jan 24 11:07 3 -> /proc/21949/fd

And one with cron:

michel ~> crontab -l
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.21968 installed on Fri Jan 24 11:30:41 2003)
(Cron version -- Id)
32 11 * * * ls -l /proc/self/fd/ > /var/tmp/fdtest.cron

michel ~> cat /var/tmp/fdtest.cron
total 0
lr-x------ 1 michel michel 64 Jan 24 11:32 0 -> pipe:[124440]
l-wx------ 1 michel michel 64 Jan 24 11:32 1 -> /var/tmp/fdtest.cron
l-wx------ 1 michel michel 64 Jan 24 11:32 2 -> pipe:[124441]
lr-x------ 1 michel michel 64 Jan 24 11:32 3 -> /proc/21974/fd

Redirection of errors

From the previous examples, it is clear that you can provide input and output files for a script (see the
section called “File input and output” for more), but some tend to forget about redirecting errors - output

Writing interactive scripts

107

which might be depended upon later on. Also, if you are lucky, errors will be mailed to you and eventual
causes of failure might get revealed. If you are not as lucky, errors will cause your script to fail and won't
be caught or sent anywhere, so that you can't start to do any worthwhile debugging.

When redirecting errors, note that the order of precedence is significant. For example, this command,
issued in /var/spool

ls -l * 2> /var/tmp/unaccessible-in-spool

will redirect standard output of the ls command to the file unaccessible-in-spool in /var/tmp.
The command

ls -l * > /var/tmp/spoollist 2>&1

will direct both standard input and standard error to the file spoollist. The command

ls -l * 2 >& 1 > /var/tmp/spoollist

directs only the standard output to the destination file, because the standard error is copied to standard
output before the standard output is redirected.

For convenience, errors are often redirected to /dev/null, if it is sure they will not be needed. Hundreds
of examples can be found in the startup scripts for your system.

Bash allows for both standard output and standard error to be redirected to the file whose name is the result
of the expansion of FILE with this construct:

&> FILE

This is the equivalent of > FILE 2>&1, the construct used in the previous set of examples. It is also often
combined with redirection to /dev/null, for instance when you just want a command to execute, no
matter what output or errors it gives.

File input and output

Using /dev/fd

The /dev/fd directory contains entries named 0, 1, 2, and so on. Opening the file /dev/fd/N is
equivalent to duplicating file descriptor N. If your system provides /dev/stdin, /dev/stdout and
/dev/stderr, you will see that these are equivalent to /dev/fd/0, /dev/fd/1 and /dev/fd/2,
respectively.

The main use of the /dev/fd files is from the shell. This mechanism allows for programs that use path-
name arguments to handle standard input and standard output in the same way as other pathnames. If /
dev/fd is not available on a system, you'll have to find a way to bypass the problem. This can be done
for instance using a hyphen (-) to indicate that a program should read from a pipe. An example:

michel ~> filter body.txt.gz | cat header.txt - footer.txt
This text is printed at the beginning of each print job and thanks the sysadmin
for setting us up such a great printing infrastructure.

Text to be filtered.

Writing interactive scripts

108

This text is printed at the end of each print job.

The cat command first reads the file header.txt, next its standard input which is the output of the
filter command, and last the footer.txt file. The special meaning of the hyphen as a command-line
argument to refer to the standard input or standard output is a misconception that has crept into many
programs. There might also be problems when specifying hyphen as the first argument, since it might be
interpreted as an option to the preceding command. Using /dev/fd allows for uniformity and prevents
confusion:

michel ~> filter body.txt | cat header.txt /dev/fd/0 footer.txt | lp

In this clean example, all output is additionally piped through lp to send it to the default printer.

Read and exec

Assigning file descriptors to files

Another way of looking at file descriptors is thinking of them as a way to assign a numeric value to a file.
Instead of using the file name, you can use the file descriptor number. The exec built-in command can
be used to replace the shell of the current process or to alter the file descriptors of the current shell. For
example, it can be used to assign a file descriptor to a file. Use

exec fdN> file

for assigning file descriptor N to file for output, and

exec fdN< file

for assigning file descriptor N to file for input. After a file descriptor has been assigned to a file, it can
be used with the shell redirection operators, as is demonstrated in the following example:

michel ~> exec 4> result.txt

michel ~> filter body.txt | cat header.txt /dev/fd/0 footer.txt >& 4

michel ~> cat result.txt
This text is printed at the beginning of each print job and thanks the sysadmin
for setting us up such a great printing infrastructure.

Text to be filtered.

This text is printed at the end of each print job.

File descriptor 5

Using this file descriptor might cause problems, see the Advanced Bash-Scripting Guide [http://
www.tldp.org/LDP/abs/html/io-redirection.html], chapter 16. You are strongly advised not to use
it.

Read in scripts

The following is an example that shows how you can alternate between file input and command line input:

http://www.tldp.org/LDP/abs/html/io-redirection.html
http://www.tldp.org/LDP/abs/html/io-redirection.html
http://www.tldp.org/LDP/abs/html/io-redirection.html

Writing interactive scripts

109

michel ~/testdir> cat sysnotes.sh
#!/bin/bash

This script makes an index of important config files, puts them together in
a backup file and allows for adding comment for each file.

CONFIG=/var/tmp/sysconfig.out
rm "$CONFIG" 2>/dev/null

echo "Output will be saved in $CONFIG."

create fd 7 with same target as fd 0 (save stdin "value")
exec 7<&0

update fd 0 to target file /etc/passwd
exec < /etc/passwd

Read the first line of /etc/passwd
read rootpasswd

echo "Saving root account info..."
echo "Your root account info:" >> "$CONFIG"
echo $rootpasswd >> "$CONFIG"

update fd 0 to target fd 7 target (old fd 0 target); delete fd 7
exec 0<&7 7<&-

echo -n "Enter comment or [ENTER] for no comment: "
read comment; echo $comment >> "$CONFIG"

echo "Saving hosts information..."

first prepare a hosts file not containing any comments
TEMP="/var/tmp/hosts.tmp"
cat /etc/hosts | grep -v "^#" > "$TEMP"

exec 7<&0
exec < "$TEMP"

read ip1 name1 alias1
read ip2 name2 alias2

echo "Your local host configuration:" >> "$CONFIG"

echo "$ip1 $name1 $alias1" >> "$CONFIG"
echo "$ip2 $name2 $alias2" >> "$CONFIG"

exec 0<&7 7<&-

echo -n "Enter comment or [ENTER] for no comment: "
read comment; echo $comment >> "$CONFIG"
rm "$TEMP"

Writing interactive scripts

110

michel ~/testdir> sysnotes.sh
Output will be saved in /var/tmp/sysconfig.out.
Saving root account info...
Enter comment or [ENTER] for no comment: hint for password: blue lagoon
Saving hosts information...
Enter comment or [ENTER] for no comment: in central DNS

michel ~/testdir> cat /var/tmp/sysconfig.out
Your root account info:
root:x:0:0:root:/root:/bin/bash
hint for password: blue lagoon
Your local host configuration:
127.0.0.1 localhost.localdomain localhost
192.168.42.1 tintagel.kingarthur.com tintagel
in central DNS

Closing file descriptors

Since child processes inherit open file descriptors, it is good practice to close a file descriptor when it is
no longer needed. This is done using the

exec fd<&-

syntax. In the above example, file descriptor 7, which has been assigned to standard input, is closed each
time the user needs to have access to the actual standard input device, usually the keyboard.

The following is a simple example redirecting only standard error to a pipe:

michel ~> cat listdirs.sh
#!/bin/bash

This script prints standard output unchanged, while standard error is
redirected for processing by awk.

INPUTDIR="$1"

fd 6 targets fd 1 target (console out) in current shell
exec 6>&1

fd 1 targets pipe, fd 2 targets fd 1 target (pipe),
fd 1 targets fd 6 target (console out), fd 6 closed, execute ls
ls "$INPUTDIR"/* 2>&1 >&6 6>&- \
 # Closes fd 6 for awk, but not for ls.

| awk 'BEGIN { FS=":" } { print "YOU HAVE NO ACCESS TO" $2 }' 6>&-

fd 6 closed for current shell
exec 6>&-

Here documents

Frequently, your script might call on another program or script that requires input. The here document
provides a way of instructing the shell to read input from the current source until a line containing only

Writing interactive scripts

111

the search string is found (no trailing blanks). All of the lines read up to that point are then used as the
standard input for a command.

The result is that you don't need to call on separate files; you can use shell-special characters, and it looks
nicer than a bunch of echo's:

michel ~> cat startsurf.sh
#!/bin/bash

This script provides an easy way for users to choose between browsers.

echo "These are the web browsers on this system:"

Start here document
cat << BROWSERS
mozilla
links
lynx
konqueror
opera
netscape
BROWSERS
End here document

echo -n "Which is your favorite? "
read browser

echo "Starting $browser, please wait..."
$browser &

michel ~> startsurf.sh
These are the web browsers on this system:
mozilla
links
lynx
konqueror
opera
netscape
Which is your favorite? opera
Starting opera, please wait...

Although we talk about a here document, it is supposed to be a construct within the same script. This is
an example that installs a package automatically, eventhough you should normally confirm:

#!/bin/bash

This script installs packages automatically, using yum.

if [$# -lt 1]; then
 echo "Usage: $0 package."
 exit 1
fi

Writing interactive scripts

112

yum install $1 << CONFIRM
y
CONFIRM

And this is how the script runs. When prompted with the “Is this ok [y/N]” string, the script answers “y”
automatically:

[root@picon bin]# ./install.sh tuxracer
Gathering header information file(s) from server(s)
Server: Fedora Linux 2 - i386 - core
Server: Fedora Linux 2 - i386 - freshrpms
Server: JPackage 1.5 for Fedora Core 2
Server: JPackage 1.5, generic
Server: Fedora Linux 2 - i386 - updates
Finding updated packages
Downloading needed headers
Resolving dependencies
Dependencies resolved
I will do the following:
[install: tuxracer 0.61-26.i386]
Is this ok [y/N]: EnterDownloading Packages
Running test transaction:
Test transaction complete, Success!
tuxracer 100 % done 1/1
Installed: tuxracer 0.61-26.i386
Transaction(s) Complete

Summary
In this chapter, we learned how to provide user comments and how to prompt for user input. This is usually
done using the echo/read combination. We also discussed how files can be used as input and output using
file descriptors and redirection, and how this can be combined with getting input from the user.

We stressed the importance of providing ample message for the users of our scripts. As always when others
use your scripts, it is better to give too much information than not enough. Here documents is a type of
shell construct that allows creation of lists, holding choices for the users. This construct can also be used
to execute otherwise interactive tasks in the background, without intervention.

Exercises
These exercises are practical applications of the constructs discussed in this chapter. When writing the
scripts, you may test by using a test directory that does not contain too much data. Write each step, then
test that portion of code, rather than writing everything at once.

1. Write a script that asks for the user's age. If it is equal to or higher than 16, print a message saying that
this user is allowed to drink alcohol. If the user's age is below 16, print a message telling the user how
many years he or she has to wait before legally being allowed to drink.

As an extra, calculate how much beer an 18+ user has drunk statistically (100 liters/year) and print this
information for the user.

2. Write a script that takes one file as an argument. Use a here document that presents the user with a
couple of choices for compressing the file. Possible choices could be gzip, bzip2, compress and zip.

Writing interactive scripts

113

3. Write a script called homebackup that automates tar so the person executing the script always uses
the desired options (cvp) and backup destination directory (/var/backups) to make a backup of
his or her home directory. Implement the following features:

• Test for the number of arguments. The script should run without arguments. If any arguments are
present, exit after printing a usage message.

• Determine whether the backups directory has enough free space to hold the backup.

• Ask the user whether a full or an incremental backup is wanted. If the user does not have a full backup
file yet, print a message that a full backup will be taken. In case of an incremental backup, only do
this if the full backup is not older than a week.

• Compress the backup using any compression tool. Inform the user that the script is doing this, because
it might take some time, during which the user might start worrying if no output appears on the screen.

• Print a message informing the user about the size of the compressed backup.

See info tar or Introduction to Linux [http://tille.garrels.be/training/tldp/c4540.html#sect_09_01_01],
chapter 9: “Preparing your data” for background information.

4. Write a script called simple-useradd.sh that adds a local user to the system. This script should:

• Take only one argument, or else exit after printing a usage message.

• Check /etc/passwd and decide on the first free user ID. Print a message containing this ID.

• Create a private group for this user, checking the /etc/group file. Print a message containing
the group ID.

• Gather information from the operator user: a comment describing this user, choice from a list of shells
(test for acceptability, else exit printing a message), expiration date for this account, extra groups of
which the new user should be a member.

• With the obtained information, add a line to /etc/passwd, /etc/group and /etc/shadow;
create the user's home directory (with correct permissions!); add the user to the desired secondary
groups.

• Set the password for this user to a default known string.

5. Rewrite the script from the section called “Testing that a file exists” so that it reads input from the user
instead of taking it from the first argument.

http://tille.garrels.be/training/tldp/c4540.html#sect_09_01_01
http://tille.garrels.be/training/tldp/c4540.html#sect_09_01_01

114

Chapter 9. Repetitive tasks
Upon completion of this chapter, you will be able to

• Use for, while and until loops, and decide which loop fits which occasion.

• Use the break and continue Bash built-ins.

• Write scripts using the select statement.

• Write scripts that take a variable number of arguments.

The for loop
How does it work?

The for loop is the first of the three shell looping constructs. This loop allows for specification of a list of
values. A list of commands is executed for each value in the list.

The syntax for this loop is:

for NAME [in LIST]; do COMMANDS; done

If [in LIST] is not present, it is replaced with in $@ and for executes the COMMANDS once for each
positional parameter that is set (see the section called “Special parameters” and the section called “Check-
ing command line arguments”).

The return status is the exit status of the last command that executes. If no commands are executed because
LIST does not expand to any items, the return status is zero.

NAME can be any variable name, although i is used very often. LIST can be any list of words, strings or
numbers, which can be literal or generated by any command. The COMMANDS to execute can also be
any operating system commands, script, program or shell statement. The first time through the loop, NAME
is set to the first item in LIST. The second time, its value is set to the second item in the list, and so on.
The loop terminates when NAME has taken on each of the values from LIST and no items are left in LIST.

Examples

Using command substitution for specifying LIST items

The first is a command line example, demonstrating the use of a for loop that makes a backup copy of
each .xml file. After issuing the command, it is safe to start working on your sources:

[carol@octarine ~/articles] ls *.xml
file1.xml file2.xml file3.xml

[carol@octarine ~/articles] ls *.xml > list

[carol@octarine ~/articles] for i in `cat list`; do cp "$i" "$i".bak ; done

[carol@octarine ~/articles] ls *.xml*
file1.xml file1.xml.bak file2.xml file2.xml.bak file3.xml file3.xml.bak

This one lists the files in /sbin that are just plain text files, and possibly scripts:

Repetitive tasks

115

for i in `ls /sbin`; do file /sbin/$i | grep ASCII; done

Using the content of a variable to specify LIST items

The following is a specific application script for converting HTML files, compliant with a certain scheme,
to PHP files. The conversion is done by taking out the first 25 and the last 21 lines, replacing these with
two PHP tags that provide header and footer lines:

[carol@octarine ~/html] cat html2php.sh
#!/bin/bash
specific conversion script for my html files to php
LIST="$(ls *.html)"
for i in "$LIST"; do
 NEWNAME=$(ls "$i" | sed -e 's/html/php/')
 cat beginfile > "$NEWNAME"
 cat "$i" | sed -e '1,25d' | tac | sed -e '1,21d'| tac >> "$NEWNAME"
 cat endfile >> "$NEWNAME"
done

Since we don't do a line count here, there is no way of knowing the line number from which to start deleting
lines until reaching the end. The problem is solved using tac, which reverses the lines in a file.

The basename command

Instead of using sed to replace the html suffix with php, it would be cleaner to use the basename
command. Read the man page for more info.

Odd characters

You will run into problems if the list expands to file names containing spaces and other irregular
characters. A more ideal construct to obtain the list would be to use the shell's globbing feature,
like this:

for i in $PATHNAME/*; do
 commands
done

The while loop

What is it?
The while construct allows for repetitive execution of a list of commands, as long as the command con-
trolling the while loop executes successfully (exit status of zero). The syntax is:

while CONTROL-COMMAND; do CONSEQUENT-COMMANDS; done

CONTROL-COMMAND can be any command(s) that can exit with a success or failure status. The
CONSEQUENT-COMMANDS can be any program, script or shell construct.

As soon as the CONTROL-COMMAND fails, the loop exits. In a script, the command following the
done statement is executed.

Repetitive tasks

116

The return status is the exit status of the last CONSEQUENT-COMMANDS command, or zero if none
was executed.

Examples

Simple example using while

Here is an example for the impatient:

#!/bin/bash

This script opens 4 terminal windows.

i="0"

while [$i -lt 4]
do
xterm &
i=$[$i+1]
done

Nested while loops

The example below was written to copy pictures that are made with a webcam to a web directory. Every
five minutes a picture is taken. Every hour, a new directory is created, holding the images for that hour.
Every day, a new directory is created containing 24 subdirectories. The script runs in the background.

#!/bin/bash

This script copies files from my homedirectory into the webserver directory.
(use scp and SSH keys for a remote directory)
A new directory is created every hour.

PICSDIR=/home/carol/pics
WEBDIR=/var/www/carol/webcam

while true; do
 DATE=`date +%Y%m%d`
 HOUR=`date +%H`
 mkdir $WEBDIR/"$DATE"

 while [$HOUR -ne "00"]; do
 DESTDIR=$WEBDIR/"$DATE"/"$HOUR"
 mkdir "$DESTDIR"
 mv $PICDIR/*.jpg "$DESTDIR"/
 sleep 3600
 HOUR=`date +%H`
 done
done

Note the use of the true statement. This means: continue execution until we are forcibly interrupted (with
kill or Ctrl+C).

Repetitive tasks

117

This small script can be used for simulation testing; it generates files:

#!/bin/bash

This generates a file every 5 minutes

while true; do
touch pic-`date +%s`.jpg
sleep 300
done

Note the use of the date command to generate all kinds of file and directory names. See the man page
for more.

Use the system

The previous example is for the sake of demonstration. Regular checks can easily be achieved
using the system's cron facility. Do not forget to redirect output and errors when using scripts
that are executed from your crontab!

Using keyboard input to control the while loop

This script can be interrupted by the user when a Ctrl+C sequence is entered:

#!/bin/bash

This script provides wisdom

FORTUNE=/usr/games/fortune

while true; do
echo "On which topic do you want advice?"
cat << topics
politics
startrek
kernelnewbies
sports
bofh-excuses
magic
love
literature
drugs
education
topics

echo
echo -n "Make your choice: "
read topic
echo
echo "Free advice on the topic of $topic: "
echo
$FORTUNE $topic
echo

Repetitive tasks

118

done

A here document is used to present the user with possible choices. And again, the true test repeats the
commands from the CONSEQUENT-COMMANDS list over and over again.

Calculating an average

This script calculates the average of user input, which is tested before it is processed: if input is not within
range, a message is printed. If q is pressed, the loop exits:

#!/bin/bash

Calculate the average of a series of numbers.

SCORE="0"
AVERAGE="0"
SUM="0"
NUM="0"

while true; do

 echo -n "Enter your score [0-100%] ('q' for quit): "; read SCORE;

 if (("$SCORE" < "0")) || (("$SCORE" > "100")); then
 echo "Be serious. Common, try again: "
 elif ["$SCORE" == "q"]; then
 echo "Average rating: $AVERAGE%."
 break
 else
 SUM=$[$SUM + $SCORE]
 NUM=$[$NUM + 1]
 AVERAGE=$[$SUM / $NUM]
 fi

done

echo "Exiting."

Note how the variables in the last lines are left unquoted in order to do arithmetic.

The until loop

What is it?
The until loop is very similar to the while loop, except that the loop executes until the TEST-COMMAND
executes successfully. As long as this command fails, the loop continues. The syntax is the same as for
the while loop:

until TEST-COMMAND; do CONSEQUENT-COMMANDS; done

The return status is the exit status of the last command executed in the CONSEQUENT-COMMANDS
list, or zero if none was executed. TEST-COMMAND can, again, be any command that can exit with

Repetitive tasks

119

a success or failure status, and CONSEQUENT-COMMANDS can be any UNIX command, script or
shell construct.

As we already explained previously, the “;” may be replaced with one or more newlines wherever it ap-
pears.

Example
An improved picturesort.sh script (see the section called “Nested while loops”), which tests for
available disk space. If not enough disk space is available, remove pictures from the previous months:

#!/bin/bash

This script copies files from my homedirectory into the webserver directory.
A new directory is created every hour.
If the pics are taking up too much space, the oldest are removed.

while true; do
 DISKFUL=$(df -h $WEBDIR | grep -v File | awk '{print $5 }' | cut -d "%" -f1 -)

 until [$DISKFUL -ge "90"]; do

 DATE=`date +%Y%m%d`
 HOUR=`date +%H`
 mkdir $WEBDIR/"$DATE"

 while [$HOUR -ne "00"]; do
 DESTDIR=$WEBDIR/"$DATE"/"$HOUR"
 mkdir "$DESTDIR"
 mv $PICDIR/*.jpg "$DESTDIR"/
 sleep 3600
 HOUR=`date +%H`
 done

 DISKFULL=$(df -h $WEBDIR | grep -v File | awk '{ print $5 }' | cut -d "%" -f1 -)
 done

 TOREMOVE=$(find $WEBDIR -type d -a -mtime +30)
 for i in $TOREMOVE; do
 rm -rf "$i";
 done

done

Note the initialization of the HOUR and DISKFULL variables and the use of options with ls and date in
order to obtain a correct listing for TOREMOVE.

I/O redirection and loops
Input redirection

Instead of controlling a loop by testing the result of a command or by user input, you can specify a file
from which to read input that controls the loop. In such cases, read is often the controlling command. As

Repetitive tasks

120

long as input lines are fed into the loop, execution of the loop commands continues. As soon as all the
input lines are read the loop exits.

Since the loop construct is considered to be one command structure (such as while TEST-COMMAND;
do CONSEQUENT-COMMANDS; done), the redirection should occur after the done statement, so that
it complies with the form

command < file

This kind of redirection also works with other kinds of loops.

Output redirection
In the example below, output of the find command is used as input for the read command controlling
a while loop:

[carol@octarine ~/testdir] cat archiveoldstuff.sh
#!/bin/bash

This script creates a subdirectory in the current directory, to which old
files are moved.
Might be something for cron (if slightly adapted) to execute weekly or
monthly.

ARCHIVENR=`date +%Y%m%d`
DESTDIR="$PWD/archive-$ARCHIVENR"

mkdir "$DESTDIR"

using quotes to catch file names containing spaces, using read -d for more
fool-proof usage:
find "$PWD" -type f -a -mtime +5 | while read -d $'\000' file

do
gzip "$file"; mv "$file".gz "$DESTDIR"
echo "$file archived"
done

Files are compressed before they are moved into the archive directory.

Break and continue

The break built-in
The break statement is used to exit the current loop before its normal ending. This is done when you don't
know in advance how many times the loop will have to execute, for instance because it is dependent on
user input.

The example below demonstrates a while loop that can be interrupted. This is a slightly improved version
of the wisdom.sh script from the section called “Using keyboard input to control the while loop”.

#!/bin/bash

Repetitive tasks

121

This script provides wisdom
You can now exit in a decent way.

FORTUNE=/usr/games/fortune

while true; do
echo "On which topic do you want advice?"
echo "1. politics"
echo "2. startrek"
echo "3. kernelnewbies"
echo "4. sports"
echo "5. bofh-excuses"
echo "6. magic"
echo "7. love"
echo "8. literature"
echo "9. drugs"
echo "10. education"
echo

echo -n "Enter your choice, or 0 for exit: "
read choice
echo

case $choice in
 1)
 $FORTUNE politics
 ;;
 2)
 $FORTUNE startrek
 ;;
 3)
 $FORTUNE kernelnewbies
 ;;
 4)
 echo "Sports are a waste of time, energy and money."
 echo "Go back to your keyboard."
 echo -e "\t\t\t\t -- \"Unhealthy is my middle name\" Soggie."
 ;;
 5)
 $FORTUNE bofh-excuses
 ;;
 6)
 $FORTUNE magic
 ;;
 7)
 $FORTUNE love
 ;;
 8)
 $FORTUNE literature
 ;;
 9)
 $FORTUNE drugs
 ;;

Repetitive tasks

122

 10)
 $FORTUNE education
 ;;
 0)
 echo "OK, see you!"
 break
 ;;
 *)
 echo "That is not a valid choice, try a number from 0 to 10."
 ;;
esac
done

Mind that break exits the loop, not the script. This can be demonstrated by adding an echo command at
the end of the script. This echo will also be executed upon input that causes break to be executed (when
the user types “0”).

In nested loops, break allows for specification of which loop to exit. See the Bash info pages for more.

The continue built-in
The continue statement resumes iteration of an enclosing for, while, until or select loop.

When used in a for loop, the controlling variable takes on the value of the next element in the list. When
used in a while or until construct, on the other hand, execution resumes with TEST-COMMAND at the
top of the loop.

Examples
In the following example, file names are converted to lower case. If no conversion needs to be done, a
continue statement restarts execution of the loop. These commands don't eat much system resources, and
most likely, similar problems can be solved using sed and awk. However, it is useful to know about this
kind of construction when executing heavy jobs, that might not even be necessary when tests are inserted
at the correct locations in a script, sparing system resources.

[carol@octarine ~/test] cat tolower.sh
#!/bin/bash

This script converts all file names containing upper case characters into file# names containing only lower cases.

LIST="$(ls)"

for name in "$LIST"; do

if [["$name" != *[[:upper:]]*]]; then
continue
fi

ORIG="$name"
NEW=`echo $name | tr 'A-Z' 'a-z'`

mv "$ORIG" "$NEW"
echo "new name for $ORIG is $NEW"

Repetitive tasks

123

done

This script has at least one disadvantage: it overwrites existing files. The noclobber option to Bash is
only useful when redirection occurs. The -b option to the mv command provides more security, but is
only safe in case of one accidental overwrite, as is demonstrated in this test:

[carol@octarine ~/test] rm *

[carol@octarine ~/test] touch test Test TEST

[carol@octarine ~/test] bash -x tolower.sh
++ ls
+ LIST=test
Test
TEST
+ [[test != *[[:upper:]]*]]
+ continue
+ [[Test != *[[:upper:]]*]]
+ ORIG=Test
++ echo Test
++ tr A-Z a-z
+ NEW=test
+ mv -b Test test
+ echo 'new name for Test is test'
new name for Test is test
+ [[TEST != *[[:upper:]]*]]
+ ORIG=TEST
++ echo TEST
++ tr A-Z a-z
+ NEW=test
+ mv -b TEST test
+ echo 'new name for TEST is test'
new name for TEST is test

[carol@octarine ~/test] ls -a
./ ../ test test~

The tr is part of the textutils package; it can perform all kinds of character transformations.

Making menus with the select built-in

General

Use of select

The select construct allows easy menu generation. The syntax is quite similar to that of the for loop:

select WORD [in LIST]; do RESPECTIVE-COMMANDS; done

LIST is expanded, generating a list of items. The expansion is printed to standard error; each item is
preceded by a number. If in LIST is not present, the positional parameters are printed, as if in $@ would
have been specified. LIST is only printed once.

Repetitive tasks

124

Upon printing all the items, the PS3 prompt is printed and one line from standard input is read. If this
line consists of a number corresponding to one of the items, the value of WORD is set to the name of that
item. If the line is empty, the items and the PS3 prompt are displayed again. If an EOF (End Of File)
character is read, the loop exits. Since most users don't have a clue which key combination is used for the
EOF sequence, it is more user-friendly to have a break command as one of the items. Any other value of
the read line will set WORD to be a null string.

The read line is saved in the REPLY variable.

The RESPECTIVE-COMMANDS are executed after each selection until the number representing the
break is read. This exits the loop.

Examples

This is a very simple example, but as you can see, it is not very user-friendly:

[carol@octarine testdir] cat private.sh
#!/bin/bash

echo "This script can make any of the files in this directory private."
echo "Enter the number of the file you want to protect:"

select FILENAME in *;
do
 echo "You picked $FILENAME ($REPLY), it is now only accessible to you."
 chmod go-rwx "$FILENAME"
done

[carol@octarine testdir] ./private.sh
This script can make any of the files in this directory private.
Enter the number of the file you want to protect:
1) archive-20030129
2) bash
3) private.sh
#? 1
You picked archive-20030129 (1)
#?

Setting the PS3 prompt and adding a possibility to quit makes it better:

#!/bin/bash

echo "This script can make any of the files in this directory private."
echo "Enter the number of the file you want to protect:"

PS3="Your choice: "
QUIT="QUIT THIS PROGRAM - I feel safe now."
touch "$QUIT"

select FILENAME in *;
do
 case $FILENAME in
 "$QUIT")

Repetitive tasks

125

 echo "Exiting."
 break
 ;;
 *)
 echo "You picked $FILENAME ($REPLY)"
 chmod go-rwx "$FILENAME"
 ;;
 esac
done
rm "$QUIT"

Submenus
Any statement within a select construct can be another select loop, enabling (a) submenu(s) within a menu.

By default, the PS3 variable is not changed when entering a nested select loop. If you want a different
prompt in the submenu, be sure to set it at the appropriate time(s).

The shift built-in

What does it do?
The shift command is one of the Bourne shell built-ins that comes with Bash. This command takes one
argument, a number. The positional parameters are shifted to the left by this number, N. The positional
parameters from N+1 to $# are renamed to variable names from $1 to $# - N+1.

Say you have a command that takes 10 arguments, and N is 4, then $4 becomes $1, $5 becomes $2 and
so on. $10 becomes $7 and the original $1, $2 and $3 are thrown away.

If N is zero or greater than $#, the positional parameters are not changed (the total number of arguments,
see the section called “Checking command line arguments”) and the command has no effect. If N is not
present, it is assumed to be 1. The return status is zero unless N is greater than $# or less than zero;
otherwise it is non-zero.

Examples
A shift statement is typically used when the number of arguments to a command is not known in advance,
for instance when users can give as many arguments as they like. In such cases, the arguments are usually
processed in a while loop with a test condition of (($#)). This condition is true as long as the number
of arguments is greater than zero. The $1 variable and the shift statement process each argument. The
number of arguments is reduced each time shift is executed and eventually becomes zero, upon which
the while loop exits.

The example below, cleanup.sh, uses shift statements to process each file in the list generated by find:

#!/bin/bash

This script can clean up files that were last accessed over 365 days ago.

USAGE="Usage: $0 dir1 dir2 dir3 ... dirN"

Repetitive tasks

126

if ["$#" == "0"]; then
 echo "$USAGE"
 exit 1
fi

while (("$#")); do

if [[$(ls "$1") == ""]]; then
 echo "Empty directory, nothing to be done."
 else
 find "$1" -type f -a -atime +365 -exec rm -i {} \;
fi

shift

done

-exec vs. xargs

The above find command can be replaced with the following:

find options | xargs [commands_to_execute_on_found_files]

The xargs command builds and executes command lines from standard input. This has the ad-
vantage that the command line is filled until the system limit is reached. Only then will the com-
mand to execute be called, in the above example this would be rm. If there are more arguments,
a new command line will be used, until that one is full or until there are no more arguments. The
same thing using find -exec calls on the command to execute on the found files every time a file
is found. Thus, using xargs greatly speeds up your scripts and the performance of your machine.

In the next example, we modified the script from the section called “Here documents” so that it accepts
multiple packages to install at once:

#!/bin/bash
if [$# -lt 1]; then
 echo "Usage: $0 package(s)"
 exit 1
fi
while (($#)); do
 yum install "$1" << CONFIRM
y
CONFIRM
shift
done

Summary
In this chapter, we discussed how repetitive commands can be incorporated in loop constructs. Most com-
mon loops are built using the for, while or until statements, or a combination of these commands. The for
loop executes a task a defined number of times. If you don't know how many times a command should
execute, use either until or while to specify when the loop should end.

Loops can be interrupted or reiterated using the break and continue statements.

Repetitive tasks

127

A file can be used as input for a loop using the input redirection operator, loops can also read output from
commands that is fed into the loop using a pipe.

The select construct is used for printing menus in interactive scripts. Looping through the command line
arguments to a script can be done using the shift statement.

Exercises
Remember: when building scripts, work in steps and test each step before incorporating it in your script.

1. Create a script that will take a (recursive) copy of files in /etc so that a beginning system administrator
can edit files without fear.

2. Write a script that takes exactly one argument, a directory name. If the number of arguments is more
or less than one, print a usage message. If the argument is not a directory, print another message. For
the given directory, print the five biggest files and the five files that were most recently modified.

3. Can you explain why it is so important to put the variables in between double quotes in the example
from the section called “Output redirection”?

4. Write a script similar to the one in the section called “The break built-in”, but think of a way of quitting
after the user has executed 3 loops.

5. Think of a better solution than move -b for the script from the section called “Examples” to prevent
overwriting of existing files. For instance, test whether or not a file exists. Don't do unnecessary work!

6. Rewrite the whichdaemon.sh script from the section called “Boolean operations”, so that it:

• Prints a list of servers to check, such as Apache, the SSH server, the NTP daemon, a name daemon,
a power management daemon, and so on.

• For each choice the user can make, print some sensible information, like the name of the web server,
NTP trace information, and so on.

• Optionally, build in a possibility for users to check other servers than the ones listed. For such cases,
check that at least the given process is running.

• Review the script from the section called “Calculating an average”. Note how character input other
than q is processed. Rebuild this script so that it prints a message if characters are given as input.

128

Chapter 10. More on variables
In this chapter, we will discuss the advanced use of variables and arguments. Upon completion, you will be able to:

• Declare and use an array of variables

• Specify the sort of variable you want to use

• Make variables read-only

• Use set to assign a value to a variable

Types of variables

General assignment of values
As we already saw, Bash understands many different kinds of variables or parameters. Thus far, we haven't
bothered much with what kind of variables we assigned, so our variables could hold any value that we
assigned to them. A simple command line example demonstrates this:

[bob in ~] VARIABLE=12

[bob in ~] echo $VARIABLE
12

[bob in ~] VARIABLE=string

[bob in ~] echo $VARIABLE
string

There are cases when you want to avoid this kind of behavior, for instance when handling telephone and
other numbers. Apart from integers and variables, you may also want to specify a variable that is a constant.
This is often done at the beginning of a script, when the value of the constant is declared. After that, there
are only references to the constant variable name, so that when the constant needs to be changed, it only
has to be done once. A variable may also be a series of variables of any type, a so-called array of variables
(VAR0VAR1, VAR2, ... VARN).

Using the declare built-in
Using a declare statement, we can limit the value assignment to variables.

The syntax for declare is the following:

declare OPTION(s) VARIABLE=value

The following options are used to determine the type of data the variable can hold and to assign it attributes:

Table 10.1. Options to the declare built-in

Option Meaning

-a Variable is an array.

-f Use function names only.

More on variables

129

Option Meaning

-i The variable is to be treated as an integer; arith-
metic evaluation is performed when the variable
is assigned a value (see the section called “Arith-
metic expansion”).

-p Display the attributes and values of each variable.
When -p is used, additional options are ignored.

-r Make variables read-only. These variables cannot
then be assigned values by subsequent assignment
statements, nor can they be unset.

-t Give each variable the trace attribute.

-x Mark each variable for export to subsequent com-
mands via the environment.

Using + instead of - turns off the attribute instead. When used in a function, declare creates local variables.

The following example shows how assignment of a type to a variable influences the value.

[bob in ~] declare -i VARIABLE=12

[bob in ~] VARIABLE=string

[bob in ~] echo $VARIABLE
0

[bob in ~] declare -p VARIABLE
declare -i VARIABLE="0"

Note that Bash has an option to declare a numeric value, but none for declaring string values. This is
because, by default, if no specifications are given, a variable can hold any type of data:

[bob in ~] OTHERVAR=blah

[bob in ~] declare -p OTHERVAR
declare -- OTHERVAR="blah"

As soon as you restrict assignment of values to a variable, it can only hold that type of data. Possible
restrictions are either integer, constant or array.

See the Bash info pages for information on return status.

Constants
In Bash, constants are created by making a variable read-only. The readonly built-in marks each specified
variable as unchangeable. The syntax is:

readonly OPTION VARIABLE(s)

The values of these variables can then no longer be changed by subsequent assignment. If the -f option is
given, each variable refers to a shell function; see Chapter 11, Functions. If -a is specified, each variable
refers to an array of variables. If no arguments are given, or if -p is supplied, a list of all read-only variables
is displayed. Using the -p option, the output can be reused as input.

More on variables

130

The return status is zero, unless an invalid option was specified, one of the variables or functions does not
exist, or -f was supplied for a variable name instead of for a function name.

[bob in ~] readonly TUX=penguinpower

[bob in ~] TUX=Mickeysoft
bash: TUX: readonly variable

Array variables
Creating arrays

An array is a variable containing multiple values. Any variable may be used as an array. There is no
maximum limit to the size of an array, nor any requirement that member variables be indexed or assigned
contiguously. Arrays are zero-based: the first element is indexed with the number 0.

Indirect declaration is done using the following syntax to declare a variable:

ARRAY[INDEXNR]=value

The INDEXNR is treated as an arithmetic expression that must evaluate to a positive number.

Explicit declaration of an array is done using the declare built-in:

declare -a ARRAYNAME

A declaration with an index number will also be accepted, but the index number will be ignored. Attributes
to the array may be specified using the declare and readonly built-ins. Attributes apply to all variables
in the array; you can't have mixed arrays.

Array variables may also be created using compound assignments in this format:

ARRAY=(value1 value2 ... valueN)

Each value is then in the form of [indexnumber=]string. The index number is optional. If it is supplied,
that index is assigned to it; otherwise the index of the element assigned is the number of the last index
that was assigned, plus one. This format is accepted by declare as well. If no index numbers are supplied,
indexing starts at zero.

Adding missing or extra members in an array is done using the syntax:

ARRAYNAME[indexnumber]=value

Remember that the read built-in provides the -a option, which allows for reading and assigning values
for member variables of an array.

Dereferencing the variables in an array
In order to refer to the content of an item in an array, use curly braces. This is necessary, as you can see
from the following example, to bypass the shell interpretation of expansion operators. If the index number
is @ or *, all members of an array are referenced.

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${ARRAY[*]}

More on variables

131

one two three

[bob in ~] echo $ARRAY[*]
one[*]

[bob in ~] echo ${ARRAY[2]}
three

[bob in ~] ARRAY[3]=four

[bob in ~] echo ${ARRAY[*]}
one two three four

Referring to the content of a member variable of an array without providing an index number is the same
as referring to the content of the first element, the one referenced with index number zero.

Deleting array variables
The unset built-in is used to destroy arrays or member variables of an array:

[bob in ~] unset ARRAY[1]

[bob in ~] echo ${ARRAY[*]}
one three four

[bob in ~] unset ARRAY

[bob in ~] echo ${ARRAY[*]}
<--no output-->

Examples of arrays
Practical examples of the usage of arrays are hard to find. You will find plenty of scripts that don't really
do anything on your system but that do use arrays to calculate mathematical series, for instance. And that
would be one of the more interesting examples...most scripts just show what you can do with an array in
an oversimplified and theoretical way.

The reason for this dullness is that arrays are rather complex structures. You will find that most practical
examples for which arrays could be used are already implemented on your system using arrays, however
on a lower level, in the C programming language in which most UNIX commands are written. A good
example is the Bash history built-in command. Those readers who are interested might check the built-
ins directory in the Bash source tree and take a look at fc.def, which is processed when compiling
the built-ins.

Another reason good examples are hard to find is that not all shells support arrays, so they break compat-
ibility.

After long days of searching, I finally found this example operating at an Internet provider. It distributes
Apache web server configuration files onto hosts in a web farm:

#!/bin/bash

if [$(whoami) != 'root']; then

More on variables

132

 echo "Must be root to run $0"
 exit 1;
fi
if [-z $1]; then
 echo "Usage: $0 </path/to/httpd.conf>"
 exit 1
fi

httpd_conf_new=$1
httpd_conf_path="/usr/local/apache/conf"
login=htuser

farm_hosts=(web03 web04 web05 web06 web07)

for i in ${farm_hosts[@]}; do
 su $login -c "scp $httpd_conf_new ${i}:${httpd_conf_path}"
 su $login -c "ssh $i sudo /usr/local/apache/bin/apachectl graceful"

done
exit 0

First two tests are performed to check whether the correct user is running the script with the correct argu-
ments. The names of the hosts that need to be configured are listed in the array farm_hosts. Then all
these hosts are provided with the Apache configuration file, after which the daemon is restarted. Note the
use of commands from the Secure Shell suite, encrypting the connections to remote hosts.

Thanks, Eugene and colleague, for this contribution.

Dan Richter contributed the following example. This is the problem he was confronted with:

“...In my company, we have demos on our web site, and every week someone has to test all of them. So I
have a cron job that fills an array with the possible candidates, uses date +%W to find the week of the year,
and does a modulo operation to find the correct index. The lucky person gets notified by e-mail.”

And this was his way of solving it:

#!/bin/bash
This is get-tester-address.sh
#
First, we test whether bash supports arrays.
(Support for arrays was only added recently.)
#
whotest[0]='test' || (echo 'Failure: arrays not supported in this version of
bash.' && exit 2)

#
Our list of candidates. (Feel free to add or
remove candidates.)
#
wholist=(
 'Bob Smith <bob@example.com>'
 'Jane L. Williams <jane@example.com>'
 'Eric S. Raymond <esr@example.com>'
 'Larry Wall <wall@example.com>'

More on variables

133

 'Linus Torvalds <linus@example.com>'
)
#
Count the number of possible testers.
(Loop until we find an empty string.)
#
count=0
while ["x${wholist[count]}" != "x"]
do
 count=$(($count + 1))
done

#
Now we calculate whose turn it is.
#
week=`date '+%W'` # The week of the year (0..53).
week=${week#0} # Remove possible leading zero.

let "index = $week % $count" # week modulo count = the lucky person

email=${wholist[index]} # Get the lucky person's e-mail address.

echo $email # Output the person's e-mail address.

This script is then used in other scripts, such as this one, which uses a here document:

email=`get-tester-address.sh` # Find who to e-mail.
hostname=`hostname` # This machine's name.

#
Send e-mail to the right person.
#
mail $email -s '[Demo Testing]' <<EOF
The lucky tester this week is: $email

Reminder: the list of demos is here:
 http://web.example.com:8080/DemoSites

(This e-mail was generated by $0 on ${hostname}.)
EOF

Operations on variables

Arithmetic on variables
We discussed this already in the section called “Arithmetic expansion”.

Length of a variable
Using the ${#VAR} syntax will calculate the number of characters in a variable. If VAR is “*” or “@”, this
value is substituted with the number of positional parameters or number of elements in an array in general.
This is demonstrated in the example below:

More on variables

134

[bob in ~] echo $SHELL
/bin/bash

[bob in ~] echo ${#SHELL}
9

[bob in ~] ARRAY=(one two three)

[bob in ~] echo ${#ARRAY}
3

Transformations of variables

Substitution

${VAR:-WORD}

If VAR is not defined or null, the expansion of WORD is substituted; otherwise the value of VAR is substi-
tuted:

[bob in ~] echo ${TEST:-test}
test

[bob in ~] echo $TEST

[bob in ~] export TEST=a_string

[bob in ~] echo ${TEST:-test}
a_string

[bob in ~] echo ${TEST2:-$TEST}
a_string

This form is often used in conditional tests, for instance in this one:

[-z "${COLUMNS:-}"] && COLUMNS=80

It is a shorter notation for

if [-z "${COLUMNS:-}"]; then
 COLUMNS=80
fi

See the section called “String comparisons” for more information about this type of condition testing.

If the hyphen (-) is replaced with the equal sign (=), the value is assigned to the parameter if it does not exist:

[bob in ~] echo $TEST2

More on variables

135

[bob in ~] echo ${TEST2:=$TEST}
a_string

[bob in ~] echo $TEST2
a_string

The following syntax tests the existence of a variable. If it is not set, the expansion of WORD is printed to
standard out and non-interactive shells quit. A demonstration:

[bob in ~] cat vartest.sh
#!/bin/bash

This script tests whether a variable is set. If not,
it exits printing a message.

echo ${TESTVAR:?"There's so much I still wanted to do..."}
echo "TESTVAR is set, we can proceed."

[bob in testdir] ./vartest.sh
./vartest.sh: line 6: TESTVAR: There's so much I still wanted to do...

[bob in testdir] export TESTVAR=present

[bob in testdir] ./vartest.sh
present
TESTVAR is set, we can proceed.

Using “+” instead of the exclamation mark sets the variable to the expansion of WORD; if it does not exist,
nothing happens.

Removing substrings

To strip a number of characters, equal to OFFSET, from a variable, use this syntax:

${VAR:OFFSET:LENGTH}

The LENGTH parameter defines how many characters to keep, starting from the first character after the
offset point. If LENGTH is omitted, the remainder of the variable content is taken:

[bob in ~] export STRING="thisisaverylongname"

[bob in ~] echo ${STRING:4}
isaverylongname

[bob in ~] echo ${STRING:6:5}
avery

${VAR#WORD}

and

${VAR##WORD}

More on variables

136

These constructs are used for deleting the pattern matching the expansion of WORD in VAR. WORD is
expanded to produce a pattern just as in file name expansion. If the pattern matches the beginning of the
expanded value of VAR, then the result of the expansion is the expanded value of VAR with the shortest
matching pattern (“#”) or the longest matching pattern (indicated with “##”).

If VAR is * or @, the pattern removal operation is applied to each positional parameter in turn, and the
expansion is the resultant list.

If VAR is an array variable subscribed with “*” or “@”, the pattern removal operation is applied to each
member of the array in turn, and the expansion is the resultant list. This is shown in the examples below:

[bob in ~] echo ${ARRAY[*]}
one two one three one four

[bob in ~] echo ${ARRAY[*]#one}
two three four

[bob in ~] echo ${ARRAY[*]#t}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]#t*}
one wo one hree one four

[bob in ~] echo ${ARRAY[*]##t*}
one one one four

The opposite effect is obtained using “%” and “%%”, as in this example below. WORD should match a
trailing portion of string:

[bob in ~] echo $STRING
thisisaverylongname

[bob in ~] echo ${STRING%name}
thisisaverylong

Replacing parts of variable names

This is done using the

${VAR/PATTERN/STRING}

or

${VAR//PATTERN/STRING}

syntax. The first form replaces only the first match, the second replaces all matches of PATTERN with
STRING:

[bob in ~] echo ${STRING/name/string}
thisisaverylongstring

More information can be found in the Bash info pages.

More on variables

137

Summary
Normally, a variable can hold any type of data, unless variables are declared explicitly. Constant variables
are set using the readonly built-in command.

An array holds a set of variables. If a type of data is declared, then all elements in the array will be set
to hold only this type of data.

Bash features allow for substitution and transformation of variables “on the fly”. Standard operations in-
clude calculating the length of a variable, arithmetic on variables, substituting variable content and sub-
stituting part of the content.

Exercises
Here are some brain crackers:

1. Write a script that does the following:

• Display the name of the script being executed.

• Display the first, third and tenth argument given to the script.

• Display the total number of arguments passed to the script.

• If there were more than three positional parameters, use shift to move all the values 3 places to the left.

• Print all the values of the remaining arguments.

• Print the number of arguments.

Test with zero, one, three and over ten arguments.

2. Write a script that implements a simple web browser (in text mode), using wget and links -dump to
display HTML pages to the user. The user has 3 choices: enter a URL, enter b for back and q to quit.
The last 10 URLs entered by the user are stored in an array, from which the user can restore the URL
by using the back functionality.

138

Chapter 11. Functions
In this chapter, we will discuss

• What functions are

• Creation and displaying of functions from the command line

• Functions in scripts

• Passing arguments to functions

• When to use functions

Introduction
What are functions?

Shell functions are a way to group commands for later execution, using a single name for this group, or
routine. The name of the routine must be unique within the shell or script. All the commands that make up
a function are executed like regular commands. When calling on a function as a simple command name,
the list of commands associated with that function name is executed. A function is executed within the
shell in which it has been declared: no new process is created to interpret the commands.

Special built-in commands are found before shell functions during command lookup. The special built-ins
are: break, :, ., continue, eval, exec, exit, export, readonly, return, set, shift, trap and unset.

Function syntax
Functions either use the syntax

function FUNCTION { COMMANDS; }

or

FUNCTION () { COMMANDS; }

Both define a shell function FUNCTION. The use of the built-in command function is optional; however,
if it is not used, parentheses are needed.

The commands listed between curly braces make up the body of the function. These commands are exe-
cuted whenever FUNCTION is specified as the name of a command. The exit status is the exit status of
the last command executed in the body.

Common mistakes

The curly braces must be separated from the body by spaces, otherwise they are interpreted in
the wrong way.

The body of a function should end in a semicolon or a newline.

Positional parameters in functions
Functions are like mini-scripts: they can accept parameters, they can use variables only known within the
function (using the local shell built-in) and they can return values to the calling shell.

Functions

139

A function also has a system for interpreting positional parameters. However, the positional parameters
passed to a function are not the same as the ones passed to a command or script.

When a function is executed, the arguments to the function become the positional parameters during its
execution. The special parameter # that expands to the number of positional parameters is updated to
reflect the change. Positional parameter 0 is unchanged. The Bash variable FUNCNAME is set to the name
of the function, while it is executing.

If the return built-in is executed in a function, the function completes and execution resumes with the next
command after the function call. When a function completes, the values of the positional parameters and
the special parameter # are restored to the values they had prior to the function's execution. If a numeric
argument is given to return, that status is returned. A simple example:

[lydia@cointreau ~/test] cat showparams.sh
#!/bin/bash

echo "This script demonstrates function arguments."
echo

echo "Positional parameter 1 for the script is $1."
echo

test ()
{
echo "Positional parameter 1 in the function is $1."
RETURN_VALUE=$?
echo "The exit code of this function is $RETURN_VALUE."
}

test other_param

[lydia@cointreau ~/test] ./showparams.sh parameter1
This script demonstrates function arguments.

Positional parameter 1 for the script is parameter1.

Positional parameter 1 in the function is other_param.
The exit code of this function is 0.

[lydia@cointreau ~/test]

Note that the return value or exit code of the function is often storen in a variable, so that it can be probed
at a later point. The init scripts on your system often use the technique of probing the RETVAL variable
in a conditional test, like this one:

if [$RETVAL -eq 0]; then
 <start the daemon>

Or like this example from the /etc/init.d/amd script, where Bash's optimization features are used:

[$RETVAL = 0] && touch /var/lock/subsys/amd

Functions

140

The commands after && are only executed when the test proves to be true; this is a shorter way to represent
an if/then/fi structure.

The return code of the function is often used as exit code of the entire script. You'll see a lot of initscripts
ending in something like exit $RETVAL.

Displaying functions
All functions known by the current shell can be displayed using the set built-in without options. Functions
are retained after they are used, unless they are unset after use. The which command also displays func-
tions:

[lydia@cointreau ~] which zless
zless is a function
zless ()
{
 zcat "$@" | "$PAGER"
}

[lydia@cointreau ~] echo $PAGER
less

This is the sort of function that is typically configured in the user's shell resource configuration files. Func-
tions are more flexible than aliases and provide a simple and easy way of adapting the user environment.

Here's one for DOS users:

dir ()
{
 ls -F --color=auto -lF --color=always "$@" | less -r
}

Examples of functions in scripts
Recycling

There are plenty of scripts on your system that use functions as a structured way of handling series of
commands. On some Linux systems, for instance, you will find the /etc/rc.d/init.d/functions
definition file, which is sourced in all init scripts. Using this method, common tasks such as checking if
a process runs, starting or stopping a daemon and so on, only have to be written once, in a general way.
If the same task is needed again, the code is recycled.

You could make your own /etc/functions file that contains all functions that you use regularly on
your system, in different scripts. Just put the line

. /etc/functions

somewhere at the start of the script and you can recycle functions.

Setting the path
This section might be found in your /etc/profile file. The function pathmunge is defined and then
used to set the path for the root and other users:

Functions

141

pathmunge () {
 if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
 if ["$2" = "after"] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 fi
}

Path manipulation
if [`id -u` = 0]; then
 pathmunge /sbin
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
fi

pathmunge /usr/X11R6/bin after

unset pathmunge

The function takes its first argument to be a path name. If this path name is not yet in the current path,
it is added. The second argument to the function defines if the path will be added in front or after the
current PATH definition.

Normal users only get /usr/X11R6/bin added to their paths, while root gets a couple of extra direc-
tories containing system commands. After being used, the function is unset so that it is not retained.

Remote backups
The following example is one that I use for making backups of the files for my books. It uses SSH keys
for enabling the remote connection. Two functions are defined, buplinux and bupbash, that each make a
.tar file, which is then compressed and sent to a remote server. After that, the local copy is cleaned up.

On Sunday, only bupbash is executed.

#/bin/bash

LOGFILE="/nethome/tille/log/backupscript.log"
echo "Starting backups for `date`" >> "$LOGFILE"

buplinux()
{
DIR="/nethome/tille/xml/db/linux-basics/"
TAR="Linux.tar"
BZIP="$TAR.bz2"
SERVER="rincewind"
RDIR="/var/www/intra/tille/html/training/"

cd "$DIR"
tar cf "$TAR" src/*.xml src/images/*.png src/images/*.eps
echo "Compressing $TAR..." >> "$LOGFILE"

Functions

142

bzip2 "$TAR"
echo "...done." >> "$LOGFILE"
echo "Copying to $SERVER..." >> "$LOGFILE"
scp "$BZIP" "$SERVER:$RDIR" > /dev/null 2>&1
echo "...done." >> "$LOGFILE"
echo -e "Done backing up Linux course:\nSource files, PNG and EPS images.\nRubbish removed." >> "$LOGFILE"
rm "$BZIP"
}

bupbash()
{
DIR="/nethome/tille/xml/db/"
TAR="Bash.tar"
BZIP="$TAR.bz2"
FILES="bash-programming/"
SERVER="rincewind"
RDIR="/var/www/intra/tille/html/training/"

cd "$DIR"
tar cf "$TAR" "$FILES"
echo "Compressing $TAR..." >> "$LOGFILE"
bzip2 "$TAR"
echo "...done." >> "$LOGFILE"
echo "Copying to $SERVER..." >> "$LOGFILE"
scp "$BZIP" "$SERVER:$RDIR" > /dev/null 2>&1
echo "...done." >> "$LOGFILE"

echo -e "Done backing up Bash course:\n$FILES\nRubbish removed." >> "$LOGFILE"
rm "$BZIP"
}

DAY=`date +%w`

if ["$DAY" -lt "2"]; then
 echo "It is `date +%A`, only backing up Bash course." >> "$LOGFILE"
 bupbash
else
 buplinux
 bupbash
fi

echo -e "Remote backup `date` SUCCESS\n----------" >> "$LOGFILE"

This script runs from cron, meaning without user interaction, so we redirect standard error from the scp
command to /dev/null.

It might be argued that all the separate steps can be combined in a command such as

tar c dir_to_backup/ | bzip2 | ssh server "cat > backup.tar.bz2"

However, if you are interested in intermediate results, which might be recovered upon failure of the script,
this is not what you want.

The expression

Functions

143

command &> file

is equivalent to

command > file 2>&1

Summary
Functions provide an easy way of grouping commands that you need to execute repetitively. When a
function is running, the positional parameters are changed to those of the function. When it stops, they are
reset to those of the calling program. Functions are like mini-scripts, and just like a script, they generate
exit or return codes.

While this was a short chapter, it contains important knowledge needed for achieving the ultimate state of
laziness that is the typical goal of any system administrator.

Exercises
Here are some useful things you can do using functions:

1. Add a function to your ~/.bashrc config file that automates the printing of man pages. The result
should be that you type something like printman <command>, upon which the first appropriate man
page rolls out of your printer. Check using a pseudo printer device for testing purposes.

As an extra, build in a possibility for the user to supply the section number of the man page he or she
wants to print.

2. Create a subdirectory in your home directory in which you can store function definitions. Put a couple of
functions in that directory. Useful functions might be, amongs others, that you have the same commands
as on DOS or a commercial UNIX when working with Linux, or vice versa. These functions should
then be imported in your shell environment when ~/.bashrc is read.

144

Chapter 12. Catching signals
In this chapter, we will discuss the following subjects:

• Available signals

• Use of the signals

• Use of the trap statement

• How to prevent users from interrupting your programs

Signals

Introduction

Finding the signal man page

Your system contains a man page listing all the available signals, but depending on your operating system,
it might be opened in a different way. On most Linux systems, this will be man 7 signal. When in doubt,
locate the exact man page and section using commands like

man -k signal | grep list

or

apropos signal | grep list

Signal names can be found using kill -l.

Signals to your Bash shell

In the absence of any traps, an interactive Bash shell ignores SIGTERM and SIGQUIT. SIGINT is caught
and handled, and if job control is active, SIGTTIN, SIGTTOU and SIGTSTP are also ignored. Commands
that are run as the result of a command substitution also ignore these signals, when keyboard generated.

SIGHUP by default exits a shell. An interactive shell will send a SIGHUP to all jobs, running or stopped;
see the documentation on the disown built-in if you want to disable this default behavior for a particular
process. Use the huponexit option for killing all jobs upon receiving a SIGHUP signal, using the shopt
built-in.

Sending signals using the shell

The following signals can be sent using the Bash shell:

Table 12.1. Control signals in Bash

Standard key combination Meaning

Ctrl+C The interrupt signal, sends SIGINT to the job run-
ning in the foreground.

Ctrl+Y The delayed suspend character. Causes a running
process to be stopped when it attempts to read in-
put from the terminal. Control is returned to the

Catching signals

145

Standard key combination Meaning

shell, the user can foreground, background or kill
the process. Delayed suspend is only available on
operating systems supporting this feature.

Ctrl+Z The suspend signal, sends a SIGTSTP to a running
program, thus stopping it and returning control to
the shell.

Terminal settings

Check your stty settings. Suspend and resume of output is usually disabled if you are using “mod-
ern” terminal emulations. The standard xterm supports Ctrl+S and Ctrl+Q by default.

Usage of signals with kill
Most modern shells, Bash included, have a built-in kill function. In Bash, both signal names and numbers
are accepted as options, and arguments may be job or process IDs. An exit status can be reported using
the -l option: zero when at least one signal was successfully sent, non-zero if an error occurred.

Using the kill command from /usr/bin, your system might enable extra options, such as the ability
to kill processes from other than your own user ID and specifying processes by name, like with pgrep
and pkill.

Both kill commands send the TERM signal if none is given.

This is a list of the most common signals:

Table 12.2. Common kill signals

Signal name Signal value Effect

SIGHUP 1 Hangup

SIGINT 2 Interrupt from keyboard

SIGKILL 9 Kill signal

SIGTERM 15 Termination signal

SIGSTOP 17,19,23 Stop the process

SIGKILL and SIGSTOP

SIGKILL and SIGSTOP can not be caught, blocked or ignored.

When killing a process or series of processes, it is common sense to start trying with the least dangerous
signal, SIGTERM. That way, programs that care about an orderly shutdown get the chance to follow the
procedures that they have been designed to execute when getting the SIGTERM signal, such as cleaning
up and closing open files. If you send a SIGKILL to a process, you remove any chance for the process to
do a tidy cleanup and shutdown, which might have unfortunate consequences.

But if a clean termination does not work, the INT orKILL signals might be the only way. For instance,
when a process does not die using Ctrl+C, it is best to use the kill -9 on that process ID:

maud: ~> ps -ef | grep stuck_process
maud 5607 2214 0 20:05 pts/5 00:00:02 stuck_process

Catching signals

146

maud: ~> kill -9 5607

maud: ~> ps -ef | grep stuck_process
maud 5614 2214 0 20:15 pts/5 00:00:00 grep stuck_process
[1]+ Killed stuck_process

When a process starts up several instances, killall might be easier. It takes the same option as the kill
command, but applies on all instances of a given process. Test this command before using it in a production
environment, since it might not work as expected on some of the commercial Unices.

Traps

General
There might be situations when you don't want users of your scripts to exit untimely using keyboard abort
sequences, for example because input has to be provided or cleanup has to be done. The trap statement
catches these sequences and can be programmed to execute a list of commands upon catching those signals.

The syntax for the trap statement is straightforward:

trap [COMMANDS] [SIGNALS]

This instructs the trap command to catch the listed SIGNALS, which may be signal names with or without
the SIG prefix, or signal numbers. If a signal is 0 or EXIT, the COMMANDS are executed when the shell
exits. If one of the signals is DEBUG, the list of COMMANDS is executed after every simple command. A
signal may also be specified as ERR; in that case COMMANDS are executed each time a simple command
exits with a non-zero status. Note that these commands will not be executed when the non-zero exit status
comes from part of an if statement, or from a while or until loop. Neither will they be executed if a logical
AND (&&) or OR (||) result in a non-zero exit code, or when a command's return status is inverted using
the ! operator.

The return status of the trap command itself is zero unless an invalid signal specification is encountered.
The trap command takes a couple of options, which are documented in the Bash info pages.

Here is a very simple example, catching Ctrl+C from the user, upon which a message is printed. When
you try to kill this program without specifying the KILL signal, nothing will happen:

#!/bin/bash
traptest.sh

trap "echo Booh!" SIGINT SIGTERM
echo "pid is $$"

while : # This is the same as "while true".
do
 sleep 60 # This script is not really doing anything.
done

How Bash interprets traps
When Bash receives a signal for which a trap has been set while waiting for a command to complete,
the trap will not be executed until the command completes. When Bash is waiting for an asynchronous

Catching signals

147

command via the wait built-in, the reception of a signal for which a trap has been set will cause the wait
built-in to return immediately with an exit status greater than 128, immediately after which the trap is
executed.

More examples

Detecting when a variable is used

When debugging longer scripts, you might want to give a variable the trace attribute and trap DE-
BUG messages for that variable. Normally you would just declare a variable using an assignment like
VARIABLE=value. Replacing the declaration of the variable with the following lines might provide valu-
able information about what your script is doing:

declare -t VARIABLE=value

trap "echo VARIABLE is being used here." DEBUG

rest of the script

Removing rubbish upon exit

The whatis command relies on a database which is regularly built using the makewhatis.cron script
with cron:

#!/bin/bash

LOCKFILE=/var/lock/makewhatis.lock

Previous makewhatis should execute successfully:

[-f $LOCKFILE] && exit 0

Upon exit, remove lockfile.

trap "{ rm -f $LOCKFILE ; exit 255; }" EXIT

touch $LOCKFILE
makewhatis -u -w
exit 0

Summary
Signals can be sent to your programs using the kill command or keyboard shortcuts. These signals can be
caught, upon which action can be performed, using the trap statement.

Some programs ignore signals. The only signal that no program can ignore is the KILL signal.

Exercises
A couple of practical examples:

Catching signals

148

1. Create a script that writes a boot image to a diskette using the dd utility. If the user tries to interrupt the
script using Ctrl+C, display a message that this action will make the diskette unusable.

2. Write a script that automates the installation of a third-party package of your choice. The package must
be downloaded from the Internet. It must be decompressed, unarchived and compiled if these actions
are appropriate. Only the actual installation of the package should be uninterruptable.

149

Appendix A. Shell Features
This document gives an overview of common shell features (the same in every shell flavour) and differing shell features
(shell specific features).

Common features
The following features are standard in every shell. Note that the stop, suspend, jobs, bg and fg commands
are only available on systems that support job control.

Table A.1. Common Shell Features

Command Meaning

> Redirect output

>> Append to file

< Redirect input

<< "Here" document (redirect input)

| Pipe output

& Run process in background.

; Separate commands on same line

* Match any character(s) in filename

? Match single character in filename

[] Match any characters enclosed

() Execute in subshell

` ` Substitute output of enclosed command

" " Partial quote (allows variable and command ex-
pansion)

' ' Full quote (no expansion)

\ Quote following character

$var Use value for variable

$$ Process id

$0 Command name

$n nth argument (n from 0 to 9)

Begin comment

bg Background execution

break Break from loop statements

cd Change directories

continue Resume a program loop

echo Display output

eval Evaluate arguments

exec Execute a new shell

fg Foreground execution

Shell Features

150

Command Meaning

jobs Show active jobs

kill Terminate running jobs

newgrp Change to a new group

shift Shift positional parameters

stop Suspend a background job

suspend Suspend a foreground job

time Time a command

umask Set or list file permissions

unset Erase variable or function definitions

wait Wait for a background job to finish

Differing features
The table below shows major differences between the standard shell (sh), Bourne Again SHell (bash),
Korn shell (ksh) and the C shell (csh).

Shell compatibility

Since the Bourne Again SHell is a superset of sh, all sh commands will also work in bash - but
not vice versa. bash has many more features of its own, and, as the table below demonstrates,
many features incorporated from other shells.

Since the Turbo C shell is a superset of csh, all csh commands will work in tcsh, but not the
other way round.

Table A.2. Differing Shell Features

sh bash ksh csh Meaning/Action

$ $ $ % Default user
prompt

>| >| >! Force redirection

> file 2>&1 &> file or >
file 2>&1

> file 2>&1 >& file Redirect stdout and
stderr to file

{ } { } Expand elements in
list

`command` `command` or
$(command)

$(command) `command` Substitute output
of enclosed com-
mand

$HOME $HOME $HOME $home Home directory

~ ~ ~ Home directory
symbol

~+, ~-, dirs ~+, ~- =-, =N Access directory
stack

var=value VAR=value var=value set var=value Variable assign-
ment

Shell Features

151

sh bash ksh csh Meaning/Action

export var export VAR=value export var=val setenv var val Set environment
variable

${nnnn} ${nn} More than 9 argu-
ments can be refer-
enced

"$@" "$@" "$@" All arguments as
separate words

$# $# $# $#argv Number of argu-
ments

$? $? $? $status Exit status of the
most recently exe-
cuted command

$! $! $! PID of most recent-
ly backgrounded
process

$- $- $- Current options

. file source file or .
file

. file source file Read commands in
file

alias x='y' alias x=y alias x y Name x stands for
command y

case case case switch or case Choose alternatives

done done done end End a loop state-
ment

esac esac esac endsw End case or switch

exit n exit n exit n exit (expr) Exit with a status

for/do for/do for/do foreach Loop through vari-
ables

set -f, set -o
nullglob|dot-
glob|nocase-
glob|noglob

noglob Ignore substitution
characters for file-
name generation

hash hash alias -t hashstat Display hashed
commands (tracked
aliases)

hash cmds hash cmds alias -t cmds rehash Remember com-
mand locations

hash -r hash -r unhash Forget command
locations

history history history List previous com-
mands

ArrowUp+Enter
or !!

r !! Redo previous
command

Shell Features

152

sh bash ksh csh Meaning/Action

!str r str !str Redo last com-
mand that starts
with “str”

!cmd:s/x/y/ r x=y cmd !cmd:s/x/y/ Replace “x” with
“y” in most recent
command starting
with “cmd”, then
execute.

if [$i -eq 5] if [$i -eq 5] if ((i==5)) if ($i==5) Sample condition
test

fi fi fi endif End if statement

ulimit ulimit ulimit limit Set resource limits

pwd pwd pwd dirs Print working di-
rectory

read read read $< Read from terminal

trap 2 trap 2 trap 2 onintr Ignore interrupts

unalias unalias unalias Remove aliases

until until until Begin until loop

while/do while/do while/do while Begin while loop

The Bourne Again SHell has many more features not listed here. This table is just to give you an idea of
how this shell incorporates all useful ideas from other shells: there are no blanks in the column for bash.
More information on features found only in Bash can be retrieved from the Bash info pages, in the “Bash
Features” section.

More information:

You should at least read one manual, being the manual of your shell. The preferred choice would be info
bash, bash being the GNU shell and easiest for beginners. Print it out and take it home, study it whenever
you have 5 minutes.

153

Glossary
This section contains an alphabetical overview of common UNIX commands. More information about the usage can
be found in the man or info pages.

A
a2ps Format files for printing on a PostScript printer.

acroread PDF viewer.

adduser Create a new user or update default new user information.

alias Create a shell alias for a command.

anacron Execute commands periodically, does not assume continuously running machine.

apropos Search the whatis database for strings.

apt-get APT package handling utility.

aspell Spell checker.

at, atq, atrm Queue, examine or delete jobs for later execution.

aumix Adjust audio mixer.

(g)awk Pattern scanning and processing language.

B
bash Bourne Again SHell.

batch Queue, examine or delete jobs for later execution.

bg Run a job in the background.

bitmap Bitmap editor and converter utilities for the X window System.

bzip2 A block-sorting file compressor.

C
cat Concatenate files and print to standard output.

cd Change directory.

cdp/cdplay An interactive text-mode program for controlling and playing audio CD Roms
under Linux.

cdparanoia An audio CD reading utility which includes extra data verification features.

cdrecord Record a CD-R.

Glossary

154

chattr Change file attributes.

chgrp Change group ownership.

chkconfig Update or query run level information for system services.

chmod Change file access permissions.

chown Change file owner and group.

compress Compress files.

cp Copy files and directories.

crontab Maintain crontab files.

csh Open a C shell.

cut Remove sections from each line of file(s).

D
date Print or set system date and time.

dd Convert and copy a file (disk dump).

df Report file system disk usage.

dhcpcd DHCP client daemon.

diff Find differences between two files.

dig Send domain name query packets to name servers.

dmesg Print or control the kernel ring buffer.

du Estimate file space usage.

E
echo Display a line of text.

ediff Diff to English translator.

egrep Extended grep.

eject Unmount and eject removable media.

emacs Start the Emacs editor.

exec Invoke subprocess(es).

exit Exit current shell.

export Add function(s) to the shell environment.

Glossary

155

F
fax2ps Convert a TIFF facsimile to PostScript.

fdformat Format floppy disk.

fdisk Partition table manipulator for Linux.

fetchmail Fetch mail from a POP, IMAP, ETRN or ODMR-capable server.

fg Bring a job in the foreground.

file Determine file type.

find Find files.

formail Mail (re)formatter.

fortune Print a random, hopefully interesting adage.

ftp Transfer files (unsafe unless anonymous account is used!)services.

G
galeon Graphical web browser.

gdm Gnome Display Manager.

(min/a)getty Control console devices.

gimp Image manipulation program.

grep Print lines matching a pattern.

grub The grub shell.

gv A PostScript and PDF viewer.

gzip Compress or expand files.

H
halt Stop the system.

head Output the first part of files.

help Display help on a shell built-in command.

host DNS lookup utility.

httpd Apache hypertext transfer protocol server.

I
id Print real and effective UIDs and GIDs.

Glossary

156

ifconfig Configure network interface or show configuration.

info Read Info documents.

init Process control initialization.

iostat Display I/O statistics.

ip Display/change network interface status.

ipchains IP firewall administration.

iptables IP packet filter administration.

J
jar Java archive tool.

jobs List backgrounded tasks.

K
kdm Desktop manager for KDE.

kill(all) Terminate process(es).

ksh Open a Korn shell.

L
ldapmodify Modify an LDAP entry.

ldapsearch LDAP search tool.

less more with features.

lilo Linux boot loader.

links Text mode WWW browser.

ln Make links between files.

loadkeys Load keyboard translation tables.

locate Find files.

logout Close current shell.

lp Send requests to the LP print service.

lpc Line printer control program.

lpq Print spool queue examination program.

lpr Offline print.

Glossary

157

lprm Remove print requests.

ls List directory content.

lynx Text mode WWW browser.

M
mail Send and receive mail.

man Read man pages.

mcopy Copy MSDOS files to/from Unix.

mdir Display an MSDOS directory.

memusage Display memory usage.

memusagestat Display memory usage statistics.

mesg Control write access to your terminal.

mformat Add an MSDOS file system to a low-level formatted floppy disk.

mkbootdisk Creates a stand-alone boot floppy for the running system.

mkdir Create directory.

mkisofs Create a hybrid ISO9660 filesystem.

more Filter for displaying text one screen at the time.

mount Mount a file system or display information about mounted file systems.

mozilla Web browser.

mt Control magnetic tape drive operation.

mtr Network diagnostic tool.

mv Rename files.

N
named Internet domain name server.

ncftp Browser program for ftp services (insecure!).

netstat Print network connections, routing tables, interface statistics, masquerade connec-
tions, and multi-cast memberships.

nfsstat Print statistics about networked file systems.

nice Run a program with modified scheduling priority.

nmap Network exploration tool and security scanner.

Glossary

158

ntsysv Simple interface for configuring run levels.

P
passwd Change password.

pdf2ps Ghostscript PDF to PostScript translator.

perl Practical Extraction and Report Language.

pg Page through text output.

ping Send echo request to a host.

pr Convert text files for printing.

printenv Print all or part of environment.

procmail Autonomous mail processor.

ps Report process status.

pstree Display a tree of processes.

pwd Print present working directory.

Q
quota Display disk usage and limits.

R
rcp Remote copy (unsafe!)

rdesktop Remote Desktop Protocol client.

reboot Stop and restart the system.

renice Alter priority of a running process.

rlogin Remote login (telnet, insecure!).

rm Remove a file.

rmdir Remove a directory.

rpm RPM Package Manager.

rsh Remote shell (insecure!).

S
scp Secure remote copy.

screen Screen manager with VT100 emulation.

Glossary

159

set Display, set or change variable.

setterm Set terminal attributes.

sftp Secure (encrypted) ftp.

sh Open a standard shell.

shutdown Bring the system down.

sleep Wait for a given period.

slocate Security Enhanced version of the GNU Locate.

slrnn text mode Usenet client.

snort Network intrusion detection tool.

sort Sort lines of text files.

ssh Secure shell.

ssh-keygen Authentication key generation.

stty Change and print terminal line settings.

su Switch user.

T
tac Concatenate and print files in reverse.

tail Output the last part of files.

talk Talk to a user.

tar Archiving utility.

tcsh Open a Turbo C shell.

telnet User interface to the TELNET protocol (insecure!).

tex Text formatting and typesetting.

time Time a simple command or give resource usage.

tin News reading program.

top Display top CPU processes.

touch Change file timestamps.

traceroute Print the route packets take to network host.

tripwire A file integrity checker for UNIX systems.

twm Tab Window Manager for the X Window System.

Glossary

160

U
ulimit Controll resources.

umask Set user file creation mask.

umount Unmount a file system.

uncompress Decompress compressed files.

uniq Remove duplicate lines from a sorted file.

update Kernel daemon to flush dirty buffers back to disk.

uptime Display system uptime and average load.

userdel Delete a user account and related files.

V
vi(m) Start the vi (improved) editor.

vimtutor The Vim tutor.

vmstat Report virtual memory statistics.

W
w Show who is logged on and what they are doing.

wall Send a message to everybody's terminal.

wc Print the number of bytes, words and lines in files.

which Shows the full path of (shell) commands.

who Show who is logged on.

who am i Print effective user ID.

whois Query a whois or nicname database.

write Send a message to another user.

X
xauth X authority file utility.

xcdroast Graphical front end to cdrecord.

xclock Analog/digital clock for X.

xconsole Monitor system console messages with X.

xdm X Display Manager with support for XDMCP, host chooser.

Glossary

161

xdvi DVI viewer.

xfs X font server.

xhost Server access control program for X

xinetd The extended Internet services daemon.

xload System load average display for X.

xlsfonts Server font list displayer for X.

xmms Audio player for X.

xpdf PDF viewer.

xterm Terminal emulator for X.

Z
zcat Compress or expand files.

zgrep Search possibly compressed files for a regular expression.

zmore Filter for viewing compressed text.

162

Index
A
aliases the section called “What are aliases?”

ANSI-C quoting the section called “ANSI-C quoting”

arguments the section called “Checking command line arguments”

arithmetic expansion the section called “Process substitution”

arithmetic operators the section called “Process substitution”

array the section called “Creating arrays”

awk the section called “Getting started with gawk”

awkprogram the section called “Gawk commands”

B
bash the section called “Advantages of the Bourne Again SHell”

.bash_login the section called “~/.bash_login”

.bash_logout the section called “~/.bash_logout”

.bash_profile the section called “~/.bash_profile”

.bashrc the section called “~/.bashrc”

batch editor the section called “What is sed?”

break the section called “The break built-in”

boolean operators the section called “Boolean operations”

Bourne shell the section called “Shell types”

brace expansion the section called “Tilde expansion”

built-in commands the section called “Shell built-in commands”

C
case statements the section called “Using the exit statement and if”

character classes the section called “Character classes”, the section called “Character classes”

child process the section called “General”

combined expressions the section called “Expressions used with if”

command substitution the section called “Arithmetic expansion”

Index

163

comments the section called “Adding comments”

conditionals the section called “Introduction to if”

configuration files the section called “Shell initialization files”

constants the section called “Constants”

continue the section called “The continue built-in”

control signals the section called “Sending signals using the shell”

creating variables the section called “Creating variables”

csh The C shell, the section called “Shell types”

D
debugging scripts the section called “Debugging Bash scripts”

declare the section called “Using the declare built-in”, the section called “Creating arrays”

double quotes the section called “Double quotes”

E
echo the section called “An example Bash script: mysystem.sh”, the section called

“script1.sh”, the section called “Debugging on part(s) of the script”, the section
called “Using the echo built-in command”

editors the section called “Writing and naming”

else the section called “if/then/else constructs”

emacs the section called “Writing and naming”

env the section called “Global variables”

esac the section called “Using the exit statement and if”

escape characters the section called “Escape characters”

escape sequences the section called “Using the echo built-in command”

/etc/bashrc the section called “/etc/bashrc”

/etc/passwd the section called “Shell types”

/etc/profile the section called “System-wide configuration files”

/etc/shells the section called “Shell types”

exec the section called “General”, the section called “Read and exec”

execute permissions the section called “Executing the script”

execution the section called “Executing the script”

Index

164

exit the section called “Using the exit statement and if”

exit status the section called “Testing exit status”

expansion the section called “Shell expansions”, the section called “Shell expansion”

export the section called “Exporting variables”

extended regular expressions the section called “Basic versus extended regular expressions”

F
file descriptors the section called “Redirection and file descriptors”, the section called “Using /

dev/fd”

file name expansion the section called “File name expansion”

find and replace the section called “Find and replace with sed”

for the section called “The for loop”

fork the section called “General”

functions the section called “What are functions?”

G
gawk the section called “What is gawk?”

gawk commands the section called “Gawk commands”

gawk fields the section called “Printing selected fields”

gawk formatting the section called “Formatting fields”

gawk scripts the section called “Gawk scripts”

gawk variables the section called “Gawk variables”

gedit the section called “Writing and naming”

global variables the section called “Global variables”

globbing the section called “Debugging on part(s) of the script”

grep the section called “What is grep?”

H
here document the section called “Here documents”

I
if the section called “General”

Index

165

init the section called “General”, the section called “Example init script”

initialization files the section called “Shell initialization files”

input field separator the section called “Bourne shell reserved variables”, the section called “Special
parameters”, the section called “Gawk variables”

interactive editing the section called “Interactive editing”

interactive scripts the section called “Displaying user messages”

interactive shell the section called “Invoked as an interactive login shell, or with `--login'”, the
section called “Invoked as an interactive non-login shell”, the section called “In-
teractive shell behavior”

invocation the section called “Invocation”

J

K
kill the section called “Usage of signals with kill”

killall the section called “Usage of signals with kill”

ksh Korn shell, the section called “Shell types”

L
length of a variable the section called “Length of a variable”

line anchors the section called “Line and word anchors”

locale the section called “Locales”

locate the section called “Writing and naming”

logic flow the section called “A word on order and logic”

login shell the section called “Invoked as an interactive login shell, or with `--login'”

M
menu the section called “Making menus with the select built-in”

metacharacters the section called “Regular expression metacharacters”

N
nested if statements the section called “Nested if statements”

Index

166

noglob the section called “Debugging on part(s) of the script”

non-interactive editing the section called “Non-interactive editing”

non-interactive shell the section called “Invoked non-interactively”

non-login shell the section called “Invoked as an interactive non-login shell”

numeric comparisons the section called “Numeric comparisons”

O
options the section called “Displaying options”

output field separator the section called “The output field separator”

output record separator the section called “The output record separator”

P
parameter expansion the section called “Command substitution”

PATH the section called “script1.sh”

pattern matching the section called “Pattern matching using Bash features”

positionalparams the section called “Special parameters”, the section called “Positional parameters
in functions”

POSIX the section called “Bash is the GNU shell”

POSIX mode the section called “POSIX mode”

primary expressions the section called “Expressions used with if”

printenv the section called “Global variables”

printf the section called “An example Bash script: mysystem.sh”, the section called “The
printf program”

process substitution the section called “Word splitting”

.profile the section called “~/.profile”

prompt the section called “Changing shell configuration files”

Q
quoting characters the section called “Quoting characters”

R
redirection the section called “Executing commands”, the section called “Changing options”,

the section called “Redirection and file descriptors”, the section called “I/O redi-
rection and loops”

Index

167

rbash the section called “The restricted shell”

read the section called “Using the read built-in command”

readonly the section called “Constants”

regular expression operators the section called “Regular expression metacharacters”, the section called “Inter-
active editing”, the section called “Special patterns”

regular expressions the section called “Regular expressions”

remote invocation the section called “Invoked remotely”

removing aliases the section called “Creating and removing aliases”

reserved variables the section called “Reserved variables”

return the section called “Positional parameters in functions”

S
sed the section called “Introduction”

sed editing commands the section called “sed commands”

sed options the section called “sed commands”

sed script the section called “Writing output files”

select the section called “Making menus with the select built-in”

set the section called “Local variables”, the section called “Displaying options”, the
section called “Displaying functions”

shift the section called “The shift built-in”

signals the section called “Introduction”

single quotes the section called “Single quotes”

source the section called “Executing the script”

special parameters the section called “Special parameters”

special variables the section called “Special parameters”

standard error the section called “General”

standard input the section called “General”

standard output the section called “General”

string comparisons the section called “String comparisons”

stty the section called “Introduction”

submenu the section called “Submenus”

Index

168

subshell the section called “Which shell will run the script?”

substitution the section called “Substitution”, the section called “Replacing parts of variable
names”

substring the section called “Removing substrings”

syntax the section called “Shell syntax”

T
tcsh the section called “Shell types”

terminology the section called “Terminology”

then the section called “Commands following the then statement”

tilde expansion the section called “Shell parameter and variable expansion”

transformation of variables the section called “Transformations of variables”

traps the section called “General”

true the section called “Nested while loops”

U
unalias the section called “What are aliases?”, the section called “Creating and removing

aliases”

unset the section called “Creating variables”, the section called “Deleting array vari-
ables”, the section called “Displaying functions”

until the section called “The until loop”

user input the section called “Using the read built-in command”, the section called “Prompt-
ing for user input”

user messages the section called “Interactive or not?”

V
variables the section called “Variables”, the section called “Types of variables”

variable expansion the section called “Command substitution”

verbose the section called “Debugging on part(s) of the script”

vi(m) the section called “Writing and naming”

W
wait the section called “How Bash interprets traps”

Index

169

whereis the section called “Writing and naming”

which the section called “Writing and naming”

while the section called “The while loop”

wildcards the section called “Wildcards”

word anchors the section called “Line and word anchors”

word splitting the section called “File name expansion”

X
xtrace the section called “Debugging on the entire script”, the section called “Debugging

on part(s) of the script”

	Bash Guide for Beginners
	Table of Contents
	Introduction
	Why this guide?
	Who should read this book?
	New versions, translations and availability
	Revision History
	Contributions
	Feedback
	Copyright information
	What do you need?
	Conventions used in this document
	Organization of this document

	Chapter 1. Bash and Bash scripts
	Common shell programs
	General shell functions
	Shell types

	Advantages of the Bourne Again SHell
	Bash is the GNU shell
	Features only found in bash
	Invocation
	Bash startup files
	Invoked as an interactive login shell, or with `--login'
	Invoked as an interactive non-login shell
	Invoked non-interactively
	Invoked with the sh command
	POSIX mode
	Invoked remotely
	Invoked when UID is not equal to EUID

	Interactive shells
	What is an interactive shell?
	Is this shell interactive?
	Interactive shell behavior

	Conditionals
	Shell arithmetic
	Aliases
	Arrays
	Directory stack
	The prompt
	The restricted shell

	Executing commands
	General
	Shell built-in commands
	Executing programs from a script

	Building blocks
	Shell building blocks
	Shell syntax
	Shell commands
	Shell functions
	Shell parameters
	Shell expansions
	Redirections
	Executing commands
	Shell scripts

	Developing good scripts
	Properties of good scripts
	Structure
	Terminology
	A word on order and logic
	An example Bash script: mysystem.sh
	Example init script

	Summary
	Exercises

	Chapter 2. Writing and debugging scripts
	Creating and running a script
	Writing and naming
	script1.sh
	Executing the script

	Script basics
	Which shell will run the script?
	Adding comments

	Debugging Bash scripts
	Debugging on the entire script
	Debugging on part(s) of the script

	Summary
	Exercises

	Chapter 3. The Bash environment
	Shell initialization files
	System-wide configuration files
	/etc/profile
	/etc/bashrc

	Individual user configuration files
	~/.bash_profile
	~/.bash_login
	~/.profile
	~/.bashrc
	~/.bash_logout

	Changing shell configuration files

	Variables
	Types of variables
	Global variables
	Local variables
	Variables by content

	Creating variables
	Exporting variables
	Reserved variables
	Bourne shell reserved variables
	Bash reserved variables

	Special parameters
	Script recycling with variables

	Quoting characters
	Why?
	Escape characters
	Single quotes
	Double quotes
	ANSI-C quoting
	Locales

	Shell expansion
	General
	Brace expansion
	Tilde expansion
	Shell parameter and variable expansion
	Command substitution
	Arithmetic expansion
	Process substitution
	Word splitting
	File name expansion

	Aliases
	What are aliases?
	Creating and removing aliases

	More Bash options
	Displaying options
	Changing options

	Summary
	Exercises

	Chapter 4. Regular expressions
	Regular expressions
	What are regular expressions?
	Regular expression metacharacters
	Basic versus extended regular expressions

	Examples using grep
	What is grep?
	Grep and regular expressions
	Line and word anchors
	Character classes
	Wildcards

	Pattern matching using Bash features
	Character ranges
	Character classes

	Summary
	Exercises

	Chapter 5. The GNU sed stream editor
	Introduction
	What is sed?
	sed commands

	Interactive editing
	Printing lines containing a pattern
	Deleting lines of input containing a pattern
	Ranges of lines
	Find and replace with sed

	Non-interactive editing
	Reading sed commands from a file
	Writing output files

	Summary
	Exercises

	Chapter 6. The GNU awk programming language
	Getting started with gawk
	What is gawk?
	Gawk commands

	The print program
	Printing selected fields
	Formatting fields
	The print command and regular expressions
	Special patterns
	Gawk scripts

	Gawk variables
	The input field separator
	The output separators
	The output field separator
	The output record separator

	The number of records
	User defined variables
	More examples
	The printf program

	Summary
	Exercises

	Chapter 7. Conditional statements
	Introduction to if
	General
	Expressions used with if
	Commands following the then statement
	Checking files
	Checking shell options

	Simple applications of if
	Testing exit status
	Numeric comparisons
	String comparisons

	More advanced if usage
	if/then/else constructs
	Dummy example
	Checking command line arguments
	Testing the number of arguments
	Testing that a file exists

	if/then/elif/else constructs
	General
	Example

	Nested if statements
	Boolean operations
	Using the exit statement and if

	Using case statements
	Simplified conditions
	Initscript example

	Summary
	Exercises

	Chapter 8. Writing interactive scripts
	Displaying user messages
	Interactive or not?
	Using the echo built-in command

	Catching user input
	Using the read built-in command
	Prompting for user input
	Redirection and file descriptors
	General
	Redirection of errors

	File input and output
	Using /dev/fd
	Read and exec
	Assigning file descriptors to files
	Read in scripts

	Closing file descriptors
	Here documents

	Summary
	Exercises

	Chapter 9. Repetitive tasks
	The for loop
	How does it work?
	Examples
	Using command substitution for specifying LIST items
	Using the content of a variable to specify LIST items

	The while loop
	What is it?
	Examples
	Simple example using while
	Nested while loops
	Using keyboard input to control the while loop
	Calculating an average

	The until loop
	What is it?
	Example

	I/O redirection and loops
	Input redirection
	Output redirection

	Break and continue
	The break built-in
	The continue built-in
	Examples

	Making menus with the select built-in
	General
	Use of select
	Examples

	Submenus

	The shift built-in
	What does it do?
	Examples

	Summary
	Exercises

	Chapter 10. More on variables
	Types of variables
	General assignment of values
	Using the declare built-in
	Constants

	Array variables
	Creating arrays
	Dereferencing the variables in an array
	Deleting array variables
	Examples of arrays

	Operations on variables
	Arithmetic on variables
	Length of a variable
	Transformations of variables
	Substitution
	Removing substrings
	Replacing parts of variable names

	Summary
	Exercises

	Chapter 11. Functions
	Introduction
	What are functions?
	Function syntax
	Positional parameters in functions
	Displaying functions

	Examples of functions in scripts
	Recycling
	Setting the path
	Remote backups

	Summary
	Exercises

	Chapter 12. Catching signals
	Signals
	Introduction
	Finding the signal man page
	Signals to your Bash shell
	Sending signals using the shell

	Usage of signals with kill

	Traps
	General
	How Bash interprets traps
	More examples
	Detecting when a variable is used
	Removing rubbish upon exit

	Summary
	Exercises

	Appendix A. Shell Features
	Common features
	Differing features

	Glossary
	Index

