
1

I/O Performance HOWTO
Sharon Snider

Linux is a trademark of Linus Torvalds. Other company, products, and service names may be
trademarks or service marks of others.

v1.1, 05/2002

Revision History
Revision v1.1 2002-05-01 sds

Updated technical information and links.
Revision v1.0 2002-04-01 sds

Wrote and converted to DocBook XML.

Abstract

This HOWTO covers information on available patches for the 2.4 kernel that can improve the I/O performance of
your Linux™ operating system.

Table of Contents
Distribution Policy .. 1
Introduction .. 1
Avoiding Bounce Buffers ... 2

Memory and Addressing in the Linux 2.4 Kernel .. 2
The Problem with Bounce Buffers ... 2
Locating the Patch .. 2
Modifying Your Device Driver to Avoid Bounce Buffers ... 3

Raw I/O Variable-Size Optimization Patch .. 4
Locating the Patch .. 4
Modifying Your Driver for the Raw I/O Variable-Size Optimization Patch 4

I/O Request Lock Patch ... 5
Locating the Patch .. 5
Modifying Your Driver for the I/O Request Lock Patch ... 5

Additional Resources ... 5

Distribution Policy
The I/O Performance-HOWTO is copyrighted © 2002, by IBM Corporation

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation with
no Invariant Sections, no Front-Cover text, and no Back-Cover text. A copy of the license can be found
at http://www.gnu.org/licenses/fdl.txt.

Introduction
This HOWTO provides information on improving the input/output (I/O) performance of the Linux oper-
ating system for the 2.4 kernel. Additional patches will be added as they become available.

http://www.gnu.org/licenses/fdl.txt

I/O Performance HOWTO

2

Please send any comments, or contributions via e-mail to Sharon Snider [mailto:snidersd@us.ibm.com].

Avoiding Bounce Buffers
This section provides information on applying and using the bounce buffer patch on the Linux 2.4 kernel.
The bounce buffer patch, written by Jens Axboe, enables device drivers that support direct memory access
(DMA) I/O to high-address physical memory to avoid bounce buffers.

This document provides a brief overview on memory and addressing in the Linux kernel, followed by
information on why and how to make use of the bounce buffer patch.

Memory and Addressing in the Linux 2.4 Kernel
The Linux 2.4 kernel includes configuration options for specifying the amount of physical memory in the
target computer. By default, the configuration is limited to the amount of memory that can be directly
mapped into the kernel's virtual address space starting at PAGE_OFFSET. On i386 systems the default
mapping scheme limits kernel-mode addressability to the first gigabyte (GB) of physical memory, also
known as low memory. Conversely, high memory is normally the memory above 1 GB. High memory is
not directly accessible or permanently mapped by the kernel. Support for high memory is an option that
is enabled during configuration of the Linux kernel.

The Problem with Bounce Buffers
When DMA I/O is performed to or from high memory, an area is allocated in low memory known as a
bounce buffer. When data travels between a device and high memory, it is first copied through the bounce
buffer.

Systems with a large amount of high memory and intense I/O activity can create a large number of bounce
buffers that can cause memory shortage problems. In addition, the excessive number of bounce buffer data
copies can lead to performance degradation.

Peripheral component interface (PCI) devices normally address up to 4 GB of physical memory. When
a bounce buffer is used for high memory that is below 4 GB, time and memory are wasted because the
peripheral has the ability to address that memory directly. Using the bounce buffer patch can decrease,
and possibly eliminate, the use of bounce buffers.

Locating the Patch
The latest version of the bounce buffer patch is block-highmem-all-18b.bz2, and it is available from Andrea
Arcangeli's -aa series kernels at http://kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/.

Configuring the Linux Kernel to Avoid Bounce Buffers

This section includes information on configuring the Linux kernel to avoid bounce buffers. The Linux
Kernel-HOWTO at http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html explains the process of re-
compiling the Linux kernel.

The following kernel configuration options are required to enable the bounce buffer patch:

Development Code - To enable the configurator to display the High I/O Support option, select the
Code maturity level options category and specify "y" to Prompt for development
and/or incomplete code/drivers.

mailto:snidersd@us.ibm.com
mailto:snidersd@us.ibm.com
http://kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html

I/O Performance HOWTO

3

High Memory Support - To enable support for physical memory that is greater than 1 GB, select the
Processor type and features category, and select a value from the High Memory Support
option.

High Memory I/O Support - To enable DMA I/O to physical addresses greater than 1 GB, select the
Processor type and features category, and enter "y" to the HIGHMEM I/O support option.
This configuration option is a new option introduced by the bounce buffer patch.

Enabled Device Drivers

The bounce buffer patch provides the kernel infrastructure, as well as the SCSI and IDE mid-level driver
modifications to support DMA I/O to high memory. Updates for several device drivers to make use of the
added support are also included with the patch.

If the bounce buffer patch is applied and you configure the kernel to support high memory I/O, many IDE
configurations and the device drivers listed below perform DMA I/O without the use of bounce buffers:

aic7xxx_drv.o
aic7xxx_old.o
cciss.o
cpqarray.o
megaraid.o
qlogicfc.o
sym53c8xx.o

Modifying Your Device Driver to Avoid Bounce Buffers
If your device drivers are not listed above in the Enabled Device Drivers section, and the device is capable
of high-memory DMA I/O, you can modify your device driver to make use of the bounce buffer patch as
follows. More information on rebuilding a Linux device driver is available at http://www.xml.com/ldd/
chapter/book/index.html.

1. A.) For SCSI Adapter Drivers: set the highmem_io bit in the Scsi_Host_Template structure.

B.) For IDE Adapter Drivers: set the highmembit in the ide_hwif_t structure.

2. Call pci_set_dma_mask(struct pci_dev *pdev, dma_addr_t mask) to specify the
address bits that the device can successfully use on DMA operations.

If DMA I/O can be supported with the specified mask, pci_set_dma_mask() will set pdev-
>dma_mask and return 0. For SCSI or IDE, the mask value will also be passed by the mid-level drivers
to blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr) so that bounce
buffers are not created for memory directly addressable by the device. Drivers other than SCSI or IDE
must call blk_queue_bounce_limit() directly.

3. Use pci_map_page(dev, page, offset, size, direction), instead of
pci_map_single(dev, address, size, direction) to map a memory region so that it
is accessible by the peripheral device. pci_map_page() supports both high and low memory.

The address parameter for pci_map_single() correlates to the page and offset parame-
ters for pci_map_page(). Use the virt_to_page() macro to convert an address to a page
and offset. The virt_to_page() macro is defined by including pci.h. For example:

void *address;

struct page *page;

http://www.xml.com/ldd/chapter/book/index.html
http://www.xml.com/ldd/chapter/book/index.html

I/O Performance HOWTO

4

unsigned long offset;

page = virt_to_page(address);

offset = (unsigned long) address & ~PAGE_MASK;

Call pci_unmap_page() after the DMA I/O transfer is complete to remove the mapping established
by pci_map_page().

Note

pci_map_single() is implemented using virt_to_bus(). virt_to_bus() han-
dles low memory addresses only. Drivers supporting high memory should no longer call
virt_to_bus() or bus_to_virt().

4. If your driver calls pci_map_sg() to map a scatter-gather DMA operation, your driver should set
the page and offset fields instead of the address field of the scatterlist structure. Refer to
step 3 for converting an address to a page and offset.

Note

If your driver is already using the PCI DMA API, continue to use pci_map_page() or
pci_map_sg() as appropriate. However, do not use the address field of the scat-
terlist structure.

Raw I/O Variable-Size Optimization Patch
This section provides information on the raw I/O variable-size optimization patch for the Linux 2.4 kernel
written by Badari Pulavarty. This patch is also known as the RAW VARY or PAGESIZE_io patch.

The raw I/O variable-size patch changes the block size used for raw I/O from hardsect_size (normally
512 bytes) to 4 kilobytes (K). The patch improves I/O throughput and CPU utilization by reducing the
number of buffer heads needed for raw I/O operations.

Locating the Patch
You can download the patch from one of the following locations:

• Andrea Arcangeli has made the patch available at http://www.kernel.org/pub/linux/kernel/people/an-
drea/kernels/v2.4/2.4.18pre7aa2/. The name of the file is 10_rawio-vary-io-1.

• Alan Cox has included the patch in the 2.4.18pre9-ac2 kernel patch. The patch is available at http://
www.kernel.org/pub/linux/kernel/people/alan/linux-2.4/2.4.18/.

• The patch is available from SourceForge at http://sourceforge.net/projects/lse/io. The latest version is
PAGESIZE_io-2.4.17.patch.

Modifying Your Driver for the Raw I/O Variable-Size Opti-
mization Patch

In previous versions of this patch, changes were enabled for all drivers. However, the 2.4.17 and later
versions of the patch enable the changes only for the Adaptec, Qlogic ISP1020, and IBM ServerRAID

http://www.kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/2.4.18pre7aa2/
http://www.kernel.org/pub/linux/kernel/people/andrea/kernels/v2.4/2.4.18pre7aa2/
http://www.kernel.org/pub/linux/kernel/people/alan/linux-2.4/2.4.18/
http://www.kernel.org/pub/linux/kernel/people/alan/linux-2.4/2.4.18/
http://sourceforge.net/projects/lse/io

I/O Performance HOWTO

5

drivers. All other drivers for version 2.4.17 and later must be modified to make use of the patch by setting
the can_do_varyio bit in the Scsi_Host_Template structure.

Note

Drivers that have the raw I/O patch enabled must support buffer heads of variable sizes
(b_size) in a single I/O request because hardsect_size is used until the data buffer is
aligned on a 4 K boundary.

Additional information is available on rebuilding Linux device drivers at http://www.xml.com/
ldd/chapter/book/index.html.

I/O Request Lock Patch
This section provides information on the I/O request lock patch, also known as the scsi concurrent queuing
patch (sior1), written by Johnathan Lahr.

The I/O request lock patch improves SCSI I/O performance on Linux 2.4 multi-processor systems by
providing concurrent I/O request queuing. There are significant I/O performance and CPU utilization im-
provements possible by enabling multi-processors to concurrently drive multiple block devices.

Before the patch is applied block I/O requests are queued one at a time holding the global spin lock,
io_request_lock. Once the patch is applied, SCSI requests are queued while holding the lock spe-
cific to the queue associated with the request. Requests that are made to different devices are queued con-
currently, and requests that are made to the same device are queued serially.

Locating the Patch
You can download the I/O request patch from Sourceforge at http://sourceforge.net/projects/lse/io. The
latest version is sior1-v1.2416. Patches that enable concurrent queuing for specific drivers are also avail-
able at SourceForge. The patch for the Emulex SCSI/FC is lpfc_sior1-v0.249 and the patch for Adaptec
SCSI is aic_sior1-v0.249.

Modifying Your Driver for the I/O Request Lock Patch
The I/O request lock patch installs concurrent queuing capability into the SCSI midlayer. Concurrent queu-
ing is activated for each SCSI adapter device driver. To activate the driver, the concurrent_queue
field in the Scsi_Host_Template structure must be set when the driver is registered.

Note

Drivers that activate concurrent queuing must ensure that any access of the request_queue
by the driver is protected by the request_queue.queue_lock.

Additional information is available on rebuilding device drivers at http://www.xml.com/ldd/chap-
ter/book/index.html.

Additional Resources
The following list of Web sites provides additional information on modifying device drivers and config-
uring the Linux kernel.

http://www.xml.com/ldd/chapter/book/index.html
http://www.xml.com/ldd/chapter/book/index.html
http://sourceforge.net/projects/lse/io
http://www.xml.com/ldd/chapter/book/index.html
http://www.xml.com/ldd/chapter/book/index.html

I/O Performance HOWTO

6

• Information on Dynamic DMA mapping is available at http://lwn.net/2001/0712/a/dma-interface.php3.

• Kernel-HOWTO is available from the Linux Documentation Project at http://www.linuxdoc.org/HOW-
TO/Kernel-HOWTO.html.

• Linux Device Drivers, 2nd Edition published by O'Reilly is available online at http://www.xml.com/
ldd/chapter/book/index.html.

http://lwn.net/2001/0712/a/dma-interface.php3
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html
http://www.xml.com/ldd/chapter/book/index.html
http://www.xml.com/ldd/chapter/book/index.html

	I/O Performance HOWTO
	Table of Contents
	Distribution Policy
	Introduction
	Avoiding Bounce Buffers
	Memory and Addressing in the Linux 2.4 Kernel
	The Problem with Bounce Buffers
	Locating the Patch
	Configuring the Linux Kernel to Avoid Bounce Buffers
	Enabled Device Drivers

	Modifying Your Device Driver to Avoid Bounce Buffers

	Raw I/O Variable-Size Optimization Patch
	Locating the Patch
	Modifying Your Driver for the Raw I/O Variable-Size Optimization Patch

	I/O Request Lock Patch
	Locating the Patch
	Modifying Your Driver for the I/O Request Lock Patch

	Additional Resources

