The Mock Mainframe Mini-HOWTO

Scot W. Stevenson <scot @yossum i n- berl i n. de>

Revision History
Revision 1.2 06. October 2005 SWS

Table of Contents

100 1 1 o o 2
CopYHght AN LICENSE ...ttt et e e ettt e e e et e e e eaba e eaens 2
TS o =0 T 2
L1 o [£ 2
FEEADBCK ...t 2
LI =155 = 1 o 2
FULUPE WV EISIONS ...eieiieiei e et et e e e et e e e e e e e e e e e e an s e e et e e et e e et aeeanneeen s 2

BACKGIOUNG ... ettt e et e e e e et 2
WHY TRIS TEXE? ettt e et e e et eeeaa s 2
REBSONING BN OVEIVIEW ...ttt e et e e e et e e e aaa s 3
What You Should Be AWAre OFcouiiiiiiiiii e e e e e e e eanneees 4
HOW ThisS TeXt IS OFganiZEAcoceueuiiiiiii ettt a e 5

LI o T o [N = I == 5
The MOCK MaiNframevee e e e e e et e e e e anaeaes 5

IS =1 1T 8
[10 =T o) 1Y/ = o 1 = 8
[T 0 1= 1 1010 7= 9
LS I G I = 11111 £ 11
X211 Forwarding With SSNueii e 12
X SEIVEN PrOGIAIMS ...ieieeii ettt ettt et e e et e et e e et et e e e e e et e e en e eeraees 12

The SUPPOIt IMBCNINESoeee e e et e e et e ettt e e et e e e eat e eeees 13

PUtting the PIeCeS tOgEINEYuiii e 13
IS ol] PSP SUPPPT 13
L= 0§ Sl o =0 1 15
NEIWOrK GEOGIAPNYeeeieeeii et e e 15

Life With MUIIPIE USEIS ...ttt 16
S T2 T o (=0 1 o= P 16
Screen Savers and Other GIMMICKSuuiiiiiii e 16
oY= Y= 1 21T 17

Going Hardcore: NON-GUI SYSLEMSiiiiiieiiii ettt et e e e e eaaes 17
Why the Command Lin€ 1S CO0Iuiiiiiiiiiiiii et 17
Setting Up TeXt TEMINAIS ...cooviiiiii e eaanns 18
Useful Shell COMMENASiiiiiee e e e e e e e aens 19

L0 [0 LS 3= o [oo 20
Mock Mainframe Case SLUTIESuuiieiieie e ee e e e e e e e e e e e eeens 20
AN FINAIY oo et 20

A brief description of a standard way to set up and work with a computer network for a small group of
peoplethat isinexpensiveto build, easy to administer, and relatively safe. It iswritten for users who might
not be completely familiar with al of the concepts involved.

The Mock Mainframe Mini-HOWTO

Introduction

Copyright and License

This document, The Mock Mainframe Mini-HOWTO is copyrighted (c) 2003-2005 by Scot W. Stevenson
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
isavailable at GNU Copyleft [http://www.gnu.org/copyleft/fdl.html]

Disclaimer

No liability for the contents of this document can be accepted. Use the concepts, examplesand information
at your own risk. There may be errors and inaccuracies that could be damaging to your system. Although
thisis highly unlikely, the author does not take any responsibility. Proceed with caution.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a
term in this document should not be regarded as affecting the validity of any trademark or service mark.
Naming of particular products or brands should not be seen as endorsements.

Credits

This document has benefitted greatly from the feedback, commentary, and corrections provided by the
following people among others:

Gareth Anderson, Jonathan Clark, Jim Dennis, Adam Hawes, Doug Jensen, Jim McQuillan, Volker Meyer,
Binh Nguyen, Douglas K. Stevenson, Paul Sunners

Feedback

Feedback is most certainly welcome for this document. Please send your additions, comments and criti-
cisms to the following email address. scot@possum.in-berlin.de. Feedback can be in English or German.

Translations

There are currently no tranglations.

Future Versions

At some point in 2004, my wife and | realized that we were spending so much time on the road that it
made more sense to move all our stuff to laptops. The home network has been restructured accordingly.
In other words, the maintainer of the Mock Mainframe HOWTO isn't using a mock mainframe anymore,
which means | am looking for somebody who is to take over this document. Volunteers are welcome to
email me at the address given above.

Background
Why This Text?

In the last decade of the past millennium, | moved out of my parents house and into asmall apartment with
my girlfriend. | left behind not only the comfort of a magically refilling refrigerator, but also a computer

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html

The Mock Mainframe Mini-HOWTO

network that suddenly had to survive daily and sometimes creative usage by my mom, dad, and kid sister
for months without me. After some gentle persuasion, my girlfriend not only switched from Windows to
Linux, but also became my fiancee. | |eft grad school and got areal job, which left me with even lesstime
to fool around even with my — er, our — network, let alone my parents computers. My fiancee became
my wife, we left the apartment for a small house, and then | found myself spending more time changing
diapers than floppies.

In other words, somewhere along the way, | turned into an adult.

It happens to the best of us, I'm told, and there are benefits that go beyond a de facto unlimited budget
for ice cream. Having al the time in the world to keep computers running, however, is not one of them. |
needed some sort of setup for the systems | am responsible for that is

Easy to administer. | don't have the time to do the same thing on three different machines, or figure out
which machine needswhich patch. Ideally, | only haveto take care of one single computer in each network,
and that infrequently. Some of the computers should not require any maintenanceat all for monthsat atime.

Easy to afford. My hardware budget now competes with house payments, food hills, and the cost of
clothes that my daughter seems to grow out of faster than we can buy them. Getting more done with less
isnot just anintellectual challenge, but a pressing necessity.

Easy to secure. The network's very structure should make it harder for outsiders to do evil things, and,
more important, make it easy for me to create a safe "lock-down" state where threats are minimal until
| find the time to patch holes.

After afew years of trial and error and a lot of time spent thinking about setting up computers while
rocking screaming babiesin the middle of the night, | created a"standard” setup. It is not aterribly clever
or ingenious way of doing things, and there are probably thousands of systems out there organized along
exactly the same lines. The aim of thistext isto present this setup in a coherent form so that other people
don't have to invent the wheel all over again when faced with the same problem.

Reasoning and Overview

Most desktop computers nowadays are insanely overpowered for what they are doing most of the time;
Email, surfing, and text processing, while maybe listening to music. Unlessyou are still using a486DX at
66 MHz, your processor is probably bored out of itsregisters even if it isdoing al of this at once. Check
any program that shows the system load — such as x| oad, t op, or upt i me — and you'll see just how
much of your expensive hardware is busy doing nothing.

With al of those resources left over, there is no technical reason why more than one person can't use the
computer at the same time. This concept seems strange and downright alien to most home users today,
thanks in no small part to Microsoft's philosophy of "a computer on every desktop" and the hardware
companies ad campaigns that imply that you are, among other things, sexually inadequate if you don't
have your very own super-charged computer under your desk.

There are good commercia reasons for hard- and software companies not to like multiuser setups. Even
if you have to upgrade the central machine, you are going to need less high-quality hardware than if
everybody has their own computer; and if four people could use one Windows machine at the same time,
that would bethree copieslessfor Microsoft to make money on. Y ou obviously don't save money if you just
install Linux on one machine instead on four, but your hardware costs and administration time will drop.

Of course there are other reasons than big company ad pressure why few people have multiuser setups.
One is computer games. Many of them suck up so much hardware that a multiuser-system is usually not
the best idea. Also, until a short time ago, there was no easy way to actually have more than one person

The Mock Mainframe Mini-HOWTO

What

log on, since most desktop computers come with only one keyboard, one mouse, and one monitor. This
has changed: Y ou can now create inexpensive and reliable graphic terminals (also known as thin clients)
with very little hassle and expense. This allows us to get away with one big machine and a couple of little
ones. Last but not least, sharing a machine means you have to behave and get along with other users.

Inanutshell, thistext isabout centralizing small computer systemsto savetime and money. The mainframe
vendor IBM wants usto believethat thisisjust what the big boys are doing, too. Now that the age of server
mania is over, they say, companies are moving stuff back onto those mainframes. Since more and more
of those mainframes are running roughly the same Linux you have at home, the only difference between a
real mainframe and your computer isabit of hardware. A few hundred thousand dollarsworth of hardware
at least, granted, but that doesn't mean that you can't use the same design principle and enjoy the benefits
of a"little" mainframe — a"mock" mainframe, if you will.

The basic setup has three parts:

The Mock Mainframe. The one and only core machine. All users access this computer, either by sitting
in front of it or (more likely) from aterminal, and they can do so at the same time. In the simplest setup,
this machine is home to all users, holds al files, and runs all programs.

The Terminals. What the user actually touches. Cheap, easy to maintain, and expendable, they can be
dual-boot machines, Linux Terminals, thin clients, or even X Window server programsfor other operating
systems.

Support Machines. Optional computers that perform a special task that for reasons of security or perfor-
mance you'd rather not have on the mock mainframe. The most common support machineis a"guardian”
that handles Internet connections.

Parts of this text will deal with installing software that is covered in far greater detail in other Linux
HOWTOs. Caught between the extremes of just referring to those texts and copying everything, | have
decided to give a very brief description of the installation procedure on a standard system. You'll get a
general idea of what needs to be done, but for the details, you'll need the specialized text. This does mean
that there are alot of references, but that just goes to show how much | am standing on the shoulders of
others here.

(Various nice people have suggested various ways of combining the basic idea with VNC. After reading
their explanations and studying the documentation, | have realized that | am too out of my depth here to
give sensible advice. Thiswould be the first project for the next caretaker of this document.)

You Should Be Aware Of

A mock mainframe setup is not for everybody. It is based on the following assumptions:

A small group of users. Though it should scale well from a family setup to at least a classroom full of
peopl e (depending on the hardware and programs used), thisis not something you want to run auniversity
or Fortune-500-company with. If you are alone, it doesn't make much sense either. Go find somebody to
move in with, then read on.

A sane system load. Unless you can redlly, really fork out alot of money for serious hardware (in which
case, you should prabably not belooking for amock mainframe), thisis not a setup where you should have
your kids playing Quake 3 while you are encoding Ogg Vorbis files and your partner iswatching aDVD,
all at the sametime. It is designed primarily for pedestrian workloads like email, browsing, chatting, and
text processing.

Some downtime tolerance. We will be using standard, off-the-shelf, home-user-grade hardware. These
parts are not built for enterprise strength work, and sooner or later, something is going to break or fail. If

The Mock Mainframe Mini-HOWTO

whatever you are doing urgently requires anything even close to 24/7 uptime, you'll have to go out and
buy industrial strength hardware — and remember to get somebody to guarantee that uptime in writing
whileyou are at it.

Some examples of when a mock mainframe might make sense:

* You have afamily of email, surfing and chat freaks who all want to be online at the same time but don't
use serious resources when they are.

* You have asmall, closed teaching system that can't be expensive or take too much time to administer.

* You and your dorm buddies each have those high-powered computers to blow each other away with
computer games, but don't want to go through the hassle of installing a serious Linux system on every
one to do something as trivial as your actual course work.

* Your organization has absolutely no money and the only hardware you can get is stuff so old, it doesn't
even have scrap value anymore, but you still have to give your people computer access.

(If you have found other situations where this setup works, please let me know.)

How This Text Is Organized

First, we will take alook at the individual parts of the setup — the mock mainframe, the terminals, the
support computers. Then we'll discuss ways of putting these elements together. Thisis also where we will
talk about security. Wel'll also discuss life with more than one user and setups for very weak hardware.

The Individual Pieces

The Mock Mainframe

The Hardware

Examining your needs. If the load that is going to be placed on the mock mainframe is more or less
constant and won't changetoo much over time, you arein thewonderful position of being ableto tailor your
hardware to your needs. This probably will let you get away with second-hand hardware, which leaves
you with more money for, say, a new surround sound system (or more realistically, a new dish washer).

The simple way to find out just what you need isto throw together a machine, just about any machine, and
then see how it performs under the load it will actually be asked to bear. Then experiment a bit: Will the
computer start to swap if you take out half of the RAM, will it speed up if you put in double the amount?
See if you can get away with a slower processor or a smaller hard disk. If you can, get feedback from
your users.

Thesetrial runscan taketime and may seem like alot of work. Theideahereisto fit the mock mainframe's
hardware as exactly as possible to the task at hand so you can use the rest of the hardware for other stuff.
Also, these trial runs can have surprising results. Most people have little experience in building a system
for more than one user, and tend to overestimate the processor strength required while underestimating
the amount of memory they need.

For example, for our setup at home in 2003 — two people running SUSE 8.2 and KDE 3.1 with aregular
load of email clients, multiple browser windows, chatting and music playback — an AMD Duron 1.0
GHz processor turned out to be overkill. We ended up with a secondhand SMP mainboard with two used
Intel Pentium |1 Xeon 450 MHz CPUs (yes, Pentium "twa"). Further experiments showed that 512 MByte

The Mock Mainframe Mini-HOWTO

RAM was slightly too much RAM: 384 MByte is fine, if you can live with the system going into swap
once in a blue moon.

Multiple vs. single processor s With more and more people working on one computer at the same time,
you'll start having moments when a single processor machine seems to stall. Also, if somebody's process
goes berserk and starts hogging the CPU, it can freeze the whole system. Thisis bad.

Decades of hardware marketing have produced computer users who reflexively go out and buy a faster
processor when things slow down. But even the fastest CPU can't do more than one thing at once (we're
ignoring tricks like hyperthreading here), it is just somewhat better at faking it. To realy do two things
at the same time, you need more than one processor. Such systems are usually referred to as " SMP'-com-
puters, from symmetrical nultiprocessing. Y ou can get them with eight processors or more (Intel Pentium
Il Xeon, AMD Opteron, Intel Xeon) but in our price range, two CPU (dual-processor) systems are the
most common.

More than one processor will go along way towards keeping the system responsive even when there are
lots of processes running. What it will not do is make a single process run twice as fast as on a system
with a single processor of the same speed. One way to visualize this is to imagine you are doing your
laundry: Two washing machines will get the whole job done in about half the time, but that does not mean
that they now each spin twice as fast; each load still takes just as long as before. Things are actually more
complicated, but thisis agood rule of thumb.

Although processor speed might be important for gamers on the bleeding edge or people who want to
simulate nuclear explosions on their desktop machine, the current clock speeds are simply perverse for
normal use. You can usually get away with far slower processors than the market is trying to force down
your throat, especially if you have more than one CPU. Thisisagood thing because SMP-mainboards are
more expensive than normal, single-processor boards, and then you still have to buy that second processor.
Keep in mind that more recent (AMD Opteron / Intel Xeon) SMP systems can have expensive needs such
as aspecial power supply and extralarge cases.

A multi-processor mainboard is not a must for a mock mainframe. But if you find your system groaning
under multiple users, adding processors might give you a better deal than adding MHz.

(At the time of writing, there was also the problem of latency in the Linux kernel. In the 2.4.x series, the
kernel isnot pre-emptable, so occasionally aone-processor system will stall while something is happening
in the bowels of the operating system. The 2.6.x kernels are supposed to be far more responsive, which
would be the end of that problem and of this paragraph,too).

Storage: SCSI vs. IDE, RAID. Y ou might want to take alook at using SCSI instead of IDE for hard disks
and other drives. One advantage of SCSI isthat you can connect more drivesto one computer than the four
you are usualy limited to with IDE. SCSI drives are also better at moving data back and forth amongst
themselves without bothering the processor. They are, however, more expensive and can be louder. On
smaller systems with few users and low loads, you should be able to use IDE drives with no problem.

If you are going to build a system where it is important you don't loose your data even between those
regular backups you perform every night right after you floss your teeth, you might want to consider a
RAID (Redundant Array of Inexpensive Disks) setup. Very roughly speaking, aRAID setup duplicatesthe
data on more than one hard disk, so that if one drive crashes, the others still have copies.

Sanegraphics. Most graphics cards cater to the game freak who has an unlimited hunger for speed, speed,
and more speed and the pocket depth to match. An AGP graphics card with 128 MByte of RAM and
dazzling 3D functions is not necessarily a bad thing in a mock mainframe, but be sure that you actually
need it. A good used PCI card will usually do just fine for email and surfing.

Heat and Lightning. Beyond the normal hardware considerations mentioned here, give some thought to
the parts that protect your machine from threats such as power surges or brown outs, or makes sure that

The Mock Mainframe Mini-HOWTO

everything stays cool, or shields your drive bays from inquisitive little children with popsicle sticks. A
good modern mainboard has temperature alarms and all sorts of other features to help you monitor your
system's heath.

In summary:

1. Think RAM before processor speed. With more than one user, you'll be using more memory and less
CPU time than you expect.

2. Two slower processors can be better than one fast one. A faster processor can switch between more
than one task faster than a slow one, but two processors don't have to switch at all. This meansyou can
use older hardware, which will almost always be less expensive even though you will need more of it.

3. Consider SCY and RAID. SCSI instead of | DE givesyou more drives on one machine, and they areable
to play amongst themselves without processor supervision. However, SCSI drives are more expensive
and make more noise. RAID helps protect your datafrom hard disk failure. Both are for more ambitious
setups.

When buying hardware for a mock mainframe, online auctioneers are your friends. Whereas your local
computer store will try to sell you the newest fad, there is no shortage of previous-generation hardware
at affordable prices online.

The Software

Some background on X. The X Window System (X Windows or just X for short) is the graphics layer
that most Linux systems use. Almost all current window managers — KDE, Gnome, Blackbox — sit on
top of X, and almost all variants of Unix use X.

X Windows has oneimportant aspect that we make extended use of with the mock mainframe: It is network
transparent. The software responsible for controlling the input/output devices — screen(s), keyboard, and
mouse — can be on adifferent computer than the programsyou are actually running. With X, itispossible
to sit in Beijing, China, with a486DX and run your programs on a supercomputer in Langley, Virginia.

This has a whole number of advantages. Graphics are hard work for a computer; having them processed
on adifferent machine than the program they belong to takes a big load off of the central computer. They
are not so hard, however, that they can't be handled by an older processor. In the distant past of computer
technology, there were special machines called X Terminals that did nothing but display graphics. Today,
a spare computer with an Intel PentiumPro or an AMD K6 with 300 MHz is enough. This lets you have
one big, fat machine running the actual programs and awhole host of cheap, small machines doing al the
graphics. Which is exactly what we are looking for.

X Windows does have some drawbacks. It gobbles up alot of bandwidth, so you will want afast network.
Also, some of theterminology isstrange. The computer (or rather the software) that controls screen, mouse,
and keyboard is called the "X server", because it "serves' the actual program, which in turnis called the
"X client". In thistext, well stick to "host" and "terminals’ to avoid confusion.

There are al kinds of good Linux HOWTOs about X Windows, so again we'll just go through the basic
steps and let you consult the special texts. I'm assuming that you already have X set up on the mock
mainframe; your distribution should handle that part for you.

First, we have to start the program that handles remote X logins. Thisis xdm(X Display Manager). De-
pending on your system and taste, you might want to use the KDE version kdm or Gnome version gdm
instead; both have nicer graphics and more features. Check the XDMCP Mini-HOWTO by Thomas Chao
for more details. Normally, you'll want xdm(or whatever) to start up in the run level that you ususally use
for graphics (for example, run level 5 for SUSE 8.2).

The Mock Mainframe Mini-HOWTO

Even when xdmisrunning, the mock mainframe should not let you connect from the outside, which isgood
security. Y ou distribution might let you change thiswith asimple entry in one of its configuration files (for
example, SUSE 8.2 uses/ et ¢/ sysconfi g/ di spl aymanager). If you have to do it the hard way,
you will want to change / et ¢/ X11/ xdni xdm confi g and opt/ kde3/ shar e/ confi g/ kdni
kdnr ¢ if you areusing kdm

After al of thisis done, you are ready to test the link. Get a computer you know has a functioning X
system, boot it in console mode — not in graphics mode (runlevel 3 instead of 5 on SUSE systems, use
i nit 3asrootfromashell). Loginandtype

fusr/ X11/bin/ X -term nate -query <host>

where"<host>" isthe name or | P-address of the mock mainframe. Y ou should get the same X login prompt
asif were sitting at the host machine.

Even if you have booted into graphical mode, you can try the following to force the X server to start a
second display:

fusr/ X11/bin/ X :1 -term nate -query <host>

This can be done from within a terminal program such as xt er mon the running display. Note that by
default, the first display is:O.

Therest of the text iswritten under the assumption that you will be using some standard distribution such
as SUSE or RedHat or Gentoo for the mock mainframe. However, it should also be little trouble to adapt
the Knoppix terminal server package (see http://www.knoppix.net Knoppix [http://www.knoppix.net]) so
that it boots right off aramdisk.

The Terminals

The machines you use to connect to the mock mainframe should be inexpensive, easy to maintain and,
from a security point of view, expendable.

Dual Boot Machines

Some people — those without atime consuming job, a spouse, or children, for example — will want to be
able to spend lots of time playing hardware intensive computer games. Although more and more games
are coming out for Linux, this usually means running a machine that has a closed source operating system
such as Microsoft Windows. The solution to this problem is to set up the game computers as dual boot
machines. The messy details are usually handled automatically by whatever distribution you are using; if
not, check out the Linux Installation Strategies mini-HOWTO Tobby Banerjee.

The mock mainframe setup lets you keep the size and complexity of the Linux partition on a dual boot
machine to a minimum; All it hasto do isto get X running and connected. There are various way to do
this, | usually just do the following:

1. Goto/etc/ X11/ xdni . Inthefile Xser ver s, comment out the line that is either : 0 | ocal /
usr/ X11R6/ bi n/ X : 0 vt 07 or something similar by putting a hash mark ("#") at the beginning.
Thiswill stop the computer from starting up X locally during boot time.

2. Inetc/inittab,insertanew linesuchas(for SUSE 8.2) xx: 5: r espawn: / usr/ X11R6/ bi n/
X -query <host >where"<host>" again isthe name of the mock mainframe. The"5" istherunlevel
that bootswith X; "xx" isjust alabel | picked; you might have to adapt both to your system (please be

http://www.knoppix.net
http://www.knoppix.net

The Mock Mainframe Mini-HOWTO

careful; Playing around with i ni t t ab can cause serious trouble). Thiswill start X with acall to the
mock mainframe, and you should get the login window when you are on the dual boot computer.

Dual boot machines are nice if you don't have to switch between operating systems too often. All of
the rebooting can quickly become a bore, though, and a dual boot machine cannot be considered truly
expendable, given the price of closed source operating systems.

Linux Terminals

TheLinux Terminal Server http://www.ltsp.org [http://ww.Itsp.org] (LTSP) letsyou use old hardwareto
put together bare-bones computers without hard disks that run as thin clients. These machines are cheap,
quiet, quick to set up, and once they are running, require just about zero maintenance (unless, say, afan
breaks). The LTSP hastaken al kinds of awards and is being used in situations far more demanding than
a small mock mainframe for your home. For example, Orwell High School in England used LTSP ma-
chines and IBM Blade Servers for their complete system (see http://www.cutterproject.co.uk/Casestud-
ies/orwell_high_school_cutter_case study.php). If you are going to have terminals that are in use con-
stantly, it is hard to see how this would not be the best solution.

Required hardwar e. Morelikely than not, somewhere in your cellar or garage (or wherever you keep the
stuff your partner lovingly calls "al that crap"), you probably have a hopelessly outdated mainboard and
processor that you've been saving because you never know. Well, guess what.

If you are using a 100 Mbit ("Fast") Ethernet network, stay above a 486D X; a Pentium |1 should be fine.
Seeif you can scrape together about 32 MByte of RAM. You'll need afloppy drive for the initial phase.
Y ou'll aso need adecent graphics card and amonitor — "decent” doesn't necessarily mean aAGP graphics
card with 128 MByte RAM, it means a clear, crisp picture.

The only thing you haveto pay slightly more attention to is the network card. Find one that has a socket to
plug ROM chipsin: a"bootable" network card. You can get away with one that doesn't have the socket,
but then you have to keep booting from the floppy. Well also need the unique number (Media Access
Control or MAC number) of the network card. On good cards, it isincluded on alittle sticker on the board
and looks something like this:

00: 50: 56:81: 00: 01

If you can't find it on the card, try booting the system with a Linux rescue floppy or any other kernel. The
number should be displayed during boot when the card is detected.

Add akeyboard and a case and that's it. Notice we don't have a hard disk, let alone a CD-ROM. With the
right kind of fans for the power supply and the processor, you have a very quiet machine.

How they work.

The LTSP home page has an in-depth technical discussion of what happens when the system powers up.
In brief, human terms:

When turned on, the Linux Terminal, like any other computer, looks around to see what it has been given
in way of hardware. It finds a network card with a MAC and notices that it has a floppy with aboot disk
(or aboot ROM in the network card.) It starts the boot program. Thisin effect tells the Linux Terminal:

CGot your MAC? Good. Now scream for help as |oud as you can.

The terminal’s call goes through the whole (local) network. On the mock mainframe, a program called
dhcpd (Dynamic Host Configuration Protocol Server Daemon) is listening. 1t compares the MAC the

http://www.ltsp.org
http://www.ltsp.org

The Mock Mainframe Mini-HOWTO

termina sent to alist of machines it has been told to take care of, and then sends the terminal an answer
that includes an | P address and alocation where the terminal can get akernel. Theterminal then configures
itself with its new name.

Using some more code from the boot program, the terminal starts a program called t f t p (Trivial File
Transfer Protocol, a stripped-down version of the venerablef t p. Thisdownloadsthe kernel from the host
machine. The terminal then boots this kernel.

Like every other Linux system, theterminal needsaroot filesystem. Instead of getting it from aharddisk, it
importsit from the mock mainframe viaNFS (Network File System). If theterminal hasvery little memory,
it can also mount a swap partition this way. The terminal then starts X, connects to the mock mainframe
viaxdm and throws up the login screen.

This al happens amazingly fast. If you turn off al of the various BIOS boot checks on the terminal and
boot off of an EPROM in the network card instead of afloppy, it happens even faster.

Running dhcpd, t f t pd, and nf sd on the mock mainframe is a security risk you might not be willing
to take. In the chapter on Support Machines, we'll show away of getting around this.

Setting up the software. On the server (mock mainframe) side, you need to install nf sd t f t pd, and
dhcpd, which your distribution should include as standard packages.

Leavetheir configuration files untouched for now. The LTSP configuration and installation programs will
do most of the work for you. Some files you should be aware of:

/ et ¢/ dhcpd. conf Provide the P address of the terminal, the hostname, the | P address
of the mock mainframe, the MAC of the terminal, and the default
gateway. Check to seeif the kernel pathname s correct.

/opt/ltsp/i386/etc/ These options control the terminal itself.
I ts.conf
/etc/ hosts The names of the Linux Terminals and their |P addresses must be

listed here. Further down, while describing the network, we'll in-
troduce a systematic naming convention to make this easier.

/etc/ hosts. al |l ow Though not mentioned in the current LTSP documentation, you
probably will have to add the following lines to this file:
rpc.mountd : <termnal> : ALLOWrpc. nountd
ALL : DENY where"<terminal>" istheterminal's|P address. This
tells the host to alow the terminal to mount the NFS file system.

Creating aboot floppy for the Linux Terminal isusualy trivial. Armed with your type of Ethernet card, go
to the website mentioned in the LTSP documentation (currently Marty Connor's ROM-O-Matic Website
http://www.rom-o-matic.net/ [http://www.rom-o-matic.net/], and follow theinstructionsfor aboot floppy.
This should produce afile of afew dozen kilobytesthat you can then put on afloppy and boot from. Later,
when you are sure that your hardware configuration is not going to change and your setup works, replace
the floppy by an EPROM that you plug into your Ethernet card.

If you have amore modern motherboard on your Terminal machine, you might be able to get around all of
this by selecting "PXE" (Pre-eXecution Environment), "MBA" (Management Boot Agent) or "Network"
from the boot sequence (CMOS) menu.

Using the terminals. Just how many Linux Terminals can one mock mainframe support? The LTSP doc-
umentation gives the following example:

10

http://www.rom-o-matic.net/
http://www.rom-o-matic.net/
http://www.rom-o-matic.net/

The Mock Mainframe Mini-HOWTO

It's not unusual to have 40 workstations [Linux Term nals], all running
Net scape and StarOffice froma Dual PII11-650 with 1GB of ram W know
this works. In fact, the | oad-average is rarely above 1.0!

(This part of the documentation was written in March 2002, hence the reference to Netscape, an ancestor
of Mozilla FireFox. StarOfficeis a commercial variant of OpenOffice.org.)

Linux Terminals will probably require some user education. People who have only ever used Windows
tend to have trouble visualizing a system where the graphics layer is not only independent from the rest
of the operating system, but can also be accessed from multiple screens. The best way to explain thisis
with examples. One trick that people new to X just love is when programs start on one terminal and then
appear on adifferent one. To enable this (but only in a safe environment!), sit down at aterminal and type
xhost +<host >
where"<host>" isthe name of the mock mainframe. Then, moveto adifferent terminal and start aprogram
such asxeyes or xr oach:
xeyes -display <termnal>:0 &
The eyes should appear on the first terminal's monitor, providing endless amusement for all. When you
are done explaining what happened, remember to retract the privileges again on the first terminal with
xhost - <host >
Y ou can a'so use this example to point out why it is dangerous to use the xhost command.
Another question that usually comes up isthe speed of Linux Terminals. One nice way to demonstrate this
isto run a series of screen savers from the x| ock suite. For example

xl ock -inw ndow - node kunppa

or more generally

xl ock -inw ndow -nmode random
Though the results will depend on your hardware, this usually takes care of any doubts.

If you are using a desktop such as KDE that allows you to shut down the computer when you log off, make
sure that this function is disabled. Otherwise, your users will shut down the mock mainframe when trying
to get out of the terminal. Tell them to just turn off the power once they have logged out. Older users will
feel a sense of nostalgia, and younger users will stare at you asif you have gone mad. Such is progress.

Real X Terminals

If fortune smiles on you or you are rich, you might find yourself with areal thin client. Installing oneis
usually not much different than setting up a Linux Terminal, except that you will need the software from
the vendor, you will probably have to pay for support, and when something goes wrong, you won't be
abletofix it yourself.

11

The Mock Mainframe Mini-HOWTO

The Linux Documentation Project has a number of general and special HOWTOs on how to set up X
Terminals, for example the Connecting X Terminals to Linux Mini-HOWTO by Salvador J. Peralta or the
NCD-X-Terminal Mini-HOWTO by lan Hodge.

X11 Forwarding with ssh

If you are on a machine that already supports X, you might be able to use the X11 Forwarding function
of the Secure Shell (ssh) program. Thisisinvoked with

ssh - X <HOST>

and creates a cryptographically protected tunnel to the host machine. X forwarding has to be configured
on both machines— in/ et ¢/ ssh/ sshd_conf i g on the host machine, X11For war di ng must be
set to yes — and it can be a little clumsy to use every day. However, for quick and dirty work, thisis
agood aternative.

X Server Programs

Asafinal way of connecting to the mock mainframe, thereare"X server" programsthat run under different
operating systems (remember, the X server powers the terminal side of things). These let you log onto
Linux machines with an operating system that does not natively run X.

Most X servers for Windows cost money, in some cases a lot of money. The single Cygwin http://
cygwin.com/xfree/ [http://cygwin.com/xfreef], which ports X (and GNU tools) to Windows machines.

If you have an Apple computer with OS X, you are in better shape. For OS 10.3 "Panther”, you need to
install the X11 package from the installation disks. Then, with any text editor, create an executable bash
shell script such as:

#!/ bi n/ bash
fusr/X11R6/bin/ X -ternmi nate -query "<HOST>" :1
exit

Note the window number is :1, because :0 is used by Aqua. Do not use the X11 Server in/ Appl i -
cations/UWilities/X1l1l. app/ Contents/MacOS/ X11,asthisdoesn't understandthe- query
command: Apple doesn't seem to want people to run remote Aqua sessions. Then, tell the firewall what
you are up to (you do have the firewall on, don't you): In Syst enPr ef erences -> Sharing -
> Firewal | createan new entry "X Window System" for Port 6001 (not: 6000). Then, move the shell
script icon to wherever you want to keep it. To start an X session, click on the icon. An "EXEC"-icon
called "X" will appear in the Dock. Click on this. Enjoy your connection. To get out again, press Com
mand- Opt i on- a. (Note: This has not been tested with Mac OS X 10.4 "Tiger")

Y ou can also check the X Darwin http://www.xdarwin.com/ [http://www.xdarwin.com/] project. XDarwin
is an Apple version of the X Window System that sits on the Darwin operating system — a variant of
BSD — that isthe core of OS X.

(Thereisone GPL X Server written in Java you might try: Weirdx http://www.jcraft.com/weirdx/ [http://
www.jcraft.com/weirdx/], though the author points out it is not made for heavy loads.)

In this chapter, we have examined terminal s that will give you a GUI (graphical user interface). If you are
tough enough, you can also hook up atext terminal to your mock mainframe and access the system viaa
CLI (command line interface). This option is covered further down.

12

http://cygwin.com/xfree/
http://cygwin.com/xfree/
http://cygwin.com/xfree/
http://www.xdarwin.com/
http://www.xdarwin.com/
http://www.jcraft.com/weirdx/
http://www.jcraft.com/weirdx/
http://www.jcraft.com/weirdx/

The Mock Mainframe Mini-HOWTO

The Support Machines

Intheory, you should need no other computersthan the mock mainframeand whatever you use asterminals.
In practice, you'll probably want additional machines for specific tasks. Usually this will be because of
security, not performance.

For example, let's assume you have a network with a dial-up connection to the Internet for email and
browsing. Of course you could put all the hard- and software required on the mock mainframe and not
see much of a performance hit (in fact, if your network is slow, it might even be faster). But that puts
your most valuable computer right where everybody who is on the Internet — which increasingly means
anybody on the planet — can attack it.

For better security, put a machine between the mock mainframe and the outside world. Make sure this
Guar dian machineis not only heavily fortified, but also expendable, so if it istaken over by the forces of
evil or compromised in any other way, you won't lose anything valuable. To lock down the network in an
emergency, all you have to do now isto physically turn off the power of the guardian machine (assuming
thisisthe only entry point to your local net). This can be very useful if you can't sit down and go though
security measures the moment you see a problem, because, say, your boss at the burger grill just does not
realize how important that dorm network is and unfeelingly insists you show up on time to flip the meat.

Other functions you might want to isolate on different machines are web- or other servers on your net that
people from the Internet can access. Y ou can aso have a support machine tend your Linux Terminals (a
Terminal Mother) or to burn CDs (aBurner).

Putting the Pieces together

So after reading this far, you know what you want, know where to get it, how to set it up, and want to
get going. There are few things you should think about, however, before you start editing configuration
files and stringing cables.

Security

Needs

Thereisonly alimited amount | can tell you about your security needs: Everybody faces different threats.
All | can do here is give some basic background on how to secure a mock mainframe setup. If you are
looking for a good genera introduction to security, try the book Secrets & Lies by Bruce Schneier.

revisited

In most books on securing computer systems, there comes a point where the author tells you to sit down
and "formulate asecurity policy". Thissoundslike such abureaucratic nightmare that most people skip the
whole chapter. I'm not going to suggest you formulate anything. But the next time you're taking a shower,
ask yourself what kind of defenses you need.

What areyou tryingto protect? Are you worried about somebody hacking into the mock mainframe and
stealing your data, the classic Hollywood threat to computers? Or that your hardware could be destroyed
by lightning? Or that somebody will sit down in front of aterminal when the user is off to the bathroom and
write emailsin his name? Or that people will open the computer cases and steal the processors? Another
way to look at thisis to figure out what parts of the system would be hard or even impossible for you to
do without. For example, the digital photos and films of my daughter when she was a baby are simply
irreplaceable.

Who or what are the forces of evil? Once you know what you are trying to protect, think about whom
you are protecting it against, maybe while you are brushing your teeth. Are you worried about crackers

13

The Mock Mainframe Mini-HOWTO

from the Internet, or that the flaky power company you are stuck with will zap your computers with a
power surge? Remember those little kids with popsicle sticks?

If your system is connected to the Internet 24/7, you need to worry about worms and crackers. If you are
only online for as long as it takes to pick up those three emails from your mother, you risk in this areais
drastically reduced. This shows how the "probability" of an attack figuresin. How likely isit for somebody
to hit your system during those 20 seconds? If an attack is highly improbable, you won't want to go to the
effort of protecting yourself against it. Some things you will probably dismiss without even thinking: Just
how were you going to defend your system against attacks by rust monsters?

Once you know what you are afraid of and how probable an attack is, you should have a feeling for the
risksyou arefacing. There arethreewaysof handling risk: Y ou can takeit, minimizeit, or insureagainst it.
Thefirst option is not as negligent as you might think: Given our budget, most of us are simply taking the
risk of meteor strikes. Thethird option usually costs money, which we don't have, so we will ignoreit here.

The second option is touches the three major parts of any security process. prevention, detection, and
response. Most computer security deals with prevention: Making sure the cases are locked so nobody can
steal the CPUSs, for example. Detection isusually skimped — when isthelast timeyou looked at one of the
filesin/ var /| og/ ?— and usudly little thought is given to the response, because people figure none
of thisis going to happen anyway. Unfortunately, you need all three, always, at least to some extent.

Even if you decide that detection systems liket ri pwi r e are too much of a hassle to install and you
don't have the time to read log files every day, give some thought to how you could tell that your system
has been compromised. In some cases, it will be hard to miss, say, when men with badges knock at your
door and take you away because your computer has been sending spam related to an improbable sexual act
with squirrelsto all of South Korea. Other intrusions might be more subtle. Would you know if somebody
copied the files from your letter folder?

Think about how you would respond to at least the most likely attacks and failures. What would you do
if your hard disk crashed? If you logged in as root and the system told you that your last log in was on
Friday — except that you were still in London, England on Friday, singing drinking songs as you happily
stumbled from one pub to the next. With anormal home system and good backups, you might be able to
get away with reinstall from scratch as the standard response all problems great or small (but make sure
that your backups are not compromised).

By the time you are putting on your socks, you'll have probably found out that your greatest risks are
quite different from those the press talks about all of the time. If you have no Microsoft products on your
network, you don't have to worry too much about anti-virus software or Active X vulnerabilities. However,
Linux does not enjoy any special bonuses when it comesto power surges, flooding, or broken fans.

Security Principles
Back to prevention: When you design your system, keep these security principlesin mind:

Building better baskets. Putting al of your files on one computer might seem like putting al of your
eggs in one basket, which proverbial grandmothers say is a bad thing to do. In fact, from a security point
of view, this can actually be agood strategy: Sinceit isamost always easier to defend one thing than it is
to defend many, one basket my be fine as long as you make sure that is a very, very good basket.

Avoiding complexity. A centralized system is usually less complex to set up and to administer: If you
have all of your users on one machine, you don't have to worry about network file systems, network logins,
network printers, and all other kinds of clever but complicated waysto connect computers. Keeping things
simple keeps things safe. This is true as well for the support machines: They should do one job and one
job only.

14

The Mock Mainframe Mini-HOWTO

Encapsulation. Thisisthe process of isolating a part of the system so that if it is compromised, the whole
of the system doesn't go down with it. The Guardian is an example of encapsulation: The dangerous work
of connecting to the Internet is handled by a cheap, expendable machine that gives attackers few tools
to work with. Another example is taking those parts of the system that the user can actually touch with
his grubby little hands — monitor, keyboard, and mouse — and putting them on a Linux Terminal. The
mock mainframe setup, however, is obviously not that good at encapsulation: The whole idea of doing
everything on one machine runs contrary to this concept.

Defensein Depth. Preventative security measures are only ways of buying time until your response kicks
in — given enough uninterrupted time, the attacker will always win. To increase the time you have to
respond, deploy your defensesin depth: After the attacker has trekked through kilometers of densejungle,
he reaches the moat which surrounds a twenty meter high outside wall, which is followed by amine field
and poisoned bamboo spikes. And in the end, the secret plans to your magical chocolate machine will not
only bein code, but also writtenininvisible ink. That's defense in depth.

The guardian is an extention of your defenses; installing a second firewall on the mock mainframe is
another one. It might sound trivial, but use different passwords for the mock mainframe and the guardian.
If you have other support machines, putting them on a different network also means more room between
them and the attacker. If you have data that you have to keep confidential at all costs (wink-wink nudge-
nudge), encrypt it, or at least those backup CDs. After a few years of backups, you won't know where
they have all ended up.

But keep in mind that even the deepest defenses only buy you more time. AsIndiana Jones and Lara Croft
will tell you, getting by the preventative measures is the easy part: All you need isawhip or afew well-
timed jumps. The problems start when the locals start shouting and the guys with the guns arrive.

Choke Paints. If thereisonly oneway to get into the system and you can control that way compl etely, that
system will be easier to secure in time of danger. We turn to the guardian one more time for an example
of a choke point: Turn off the machine, and you are safe from Internet villains, provided it is really the
only access point. The problem with many networksisthat somewhere, somebody has a connection to the
outside that the system administrator doesn't know about. Think of all the laptops that now come with a
modem or, even worse, awireless LAN card built in. Connect those |aptops to your net, and you have an
instant back door. Remember your history: Y our main gate can be high and strong and crawling with orcs,
but miss one single little spider hole, and two hobbits can ruin your whole day.

Network Hardware

If you are setting up a network from scratch, go with Fast Ethernet. The cables and network cards are not
that much more expensive than the older, 10 MBit/sec Ethernet. X Windows is bandwidth-hungry, and
needs always grow before they shrink.

One note about running X terminals over awireless LAN: | have been told in no uncertain wordsto avoid
this. Two problems are mentioned: Variable bandwidth, which can leave your session slowing to a crawl
when your neighbor does something major, and dropouts, which can lead to the whole session being shut
down with all X programs using the connection terminated and your work gone. There are a so the usual
caveats about the security of WiFi connections.

Network Geography

Y ou can make life alittle easer for yourself by picking a sane and systematic way to hame your comput-
ers. Pick a set of addresses for your system based on what each machine does. Internally, use the IPv4
address space of 192.168.. that isreserved for networkswithout direct contact to the Internet. For example,
let's take 192.168.1.* . The mock mainframe could be 192.168.1.1, the support machines 192.168.1.10 to
192.168.1.19, and the terminals 192.168.1.100 to 192.168.1.199. This way, you can immediately see the

15

The Mock Mainframe Mini-HOWTO

type of computer based on the IPv4 number, and the less trusted a machine is, the larger the last number
will be.

Combine this with a naming system that is easy to use. For example, you can name the mock mainframe
fatcat and the terminal s kitten00 to kitten99 (with 1Pv4 numbers from 192.168.1.100 192.168.1.199). Giv-
ing the support machines names based on their function is probably easier than something systematic. In
the feline theme, try claws for a guardian machine or mamacat for aterminal mother.

Life With Multiple Users

Having everybody using a common machine gives your users far more opportunity to get in each other's
hair. Even though Unix (and therefore Linux) was designed from the bottom up as a multi-user system,
there are only so many resources available, and having one user hogging them will annoy everybody. And
they will all cometo you and say it isyour fault.

Shared Resources

One of your biggest headaches will probably be CD-ROMs and CD-R/Ws. In theory, they belong on
the mock mainframe like everything else, but this creates lots of problems. Y our users need to be able to
physically get to the machine to put the CDs in, which might not be a good idea from the security point
of view. Oncethe CD isin the drive, you can get various people trying to mount, unmount or gect it, and
getting upset if they can't. Reading a CD (for examplewith cdpar anoi a) can interfere with multimedia
programs and cause sound tracksto skip. Writing CDsis even worse because it requires the system to pay
attention for a certain uninterrupted amount of time. If you only have one processor on the machine and
other users decide to do something intensive while the burn is going on, the write might fail, and somebody
isgoing to be really upset, because he just lost a blank CD.

One thing you can do is to move the CD-R/W onto a dedicated support machine (the Burner) that does
nothing else. Such a machine can be set up with Jorg P. M. Haeger's http://joerghaeger.de/webCDwriter
webCDwriter [http://joerghaeger.de/webCDwriter/]. It has a graphical interface written in Java and runs
under any operating system with a Java Virtua Machine. This preserves the principle of encapsulation.
Make sure there is nothing else on the Burner that you can't afford to use if the system is compromised.
Thereare of course other, more primitive ways: Y ou could export the user's home directory by NFS, which
is, however, exactly the sort of thing we are trying to avoid. Or have the user create an image of the CD
asan SO file, and then let him send it to the support machineviasf t p or scp. Then the user can walk
over to the machine and burn it by hand.

In afamily setting, none of this might be a problem. For alarger configuration, with untrusted users, it
could beabig problem. Y ou might end up telling everybody that they can't burn CDs onthissystem, period.

Other resources are less of a problem. Traditionally, you used a quota setting to limit the amount of disk
space any single user could use. With hard disks becoming less expensive by the month, thisis not much
of a problem anymore, but depending on your user base, you might consider installing very large quotas
just to be safe. Users, however, are easily upset by the very idea of quotas, especialy if they hit their limit
while most of the harddisk is still free.

Screen Savers and Other Gimmicks

The original aim of screen savers was to keep whatever was being displayed on the screen from burning
itself into the monitor's phosphorous coating while you were of f to the water cooler. Soon, however, clever,
cute, and intricate screen savers became an end in themselves. Today's screen savers have become so
resource-hungry that some actually require you to have certain types of hardware (like OpenGL support)
before they will run.

16

http://joerghaeger.de/webCDwriter/
http://joerghaeger.de/webCDwriter/
http://joerghaeger.de/webCDwriter/

The Mock Mainframe Mini-HOWTO

If you have a mock mainframe with X Windows, you can be sure that every single one of your users will
have a screen saver setup that will test the system to itslimits (just for fun, log into every terminal attached
to the mainframe once you have set everything up, and let each one run a different screen saver. Watch
the system load while you do this. Try not to whimper too loudly). To make matters worse, some desktops
like KDE let the user set the screen saver's priority. Theideais that the user can set alow priority, but in
reality, they increase the priority until their jumping OpenGL balls don't jerk anymore.

Users consider playing around with their screen savers one of their basic computer rights, so just blocking
everything except the "blank screen” mode can lead to people showing up in your office with pitchforks
and torches. One way around thisisto put awrapper around the screen saver that makes sure the priority
is set low. For example, if your setup uses the x| ock command as a screen saver, you can move it to
x| ock. r eal and then create a shell script named x| ock:

#! / bi n/ bash
nice -19 xlock.real "$@

Thisisavery crude script, but you get the point. This lets your users keep their beloved screen savers but
makes sure that the performance hit won't be deadly to the whole system.

Idle Terminals

Another annoying habit users have is to walk away from their terminals while they are till logged in.
KDE and Gnome have a "Lock Screen” button right next to their "Logout" button, but you might have
problems getting your users to useit, at least until the first person finds that somebody has had fun with
his email account.

One way to deal with thisis to have the system shut down abandoned terminals with the idle daemon,
which should be included in your distribution. Use thiswith care: If you force a user off the system when
he still has some half-written letter on his screen, he isn't going to like it. The program xaut ol ock can
be set up to invoke a screen saver or adifferent program after an X session has been idle for a configured
amount of time.

Going Hardcore: Non-GUI Systems

As nice as KDE and Gnome are, they use system resources like popcorn. If you are only starting an
application, try a desktop that is more lightweight such as Bl ackbox. Though your distribution should
set up thebasicsfor you, you will probably haveto edit the configuration files (in thiscase, the Bl ackbox
menu file that is specified in ~/ . bl ackbox) for each user. Also, make sure your users know how to
work the environment. At the very least, teach them that CTRL- ALT- BACKSPACE killsthe X server.

But real men and women don't need agraphical user interface (GUI) at al: They useacommand shell such
asbash. Before X Windows gave us graphics, the Free Software Foundation (FSF) had created the GNU
toolsthat are asrock steady as any piece of software on the planet. They are the heart of every distribution,
and without them, there would be no "Linux" system (which is why "GNU/Linux" is the more percise
term). If you have no choice but to get by with really weak hardware — we're talking anything down to
a 386SX here — you can dump X Windows altogether and get along just fine. Even if you stick to GUIs,
some basic knowledge of the shell can help you get far more out of your system.

Why the Command Line Is Cool

Think of Linux on the command line as the Willow Rosenberg approach to computers. Whereas GUIs are
as spectacular as a punch on the nose by vampire slayer Buffy Summers, even alittle knowledge of the

17

The Mock Mainframe Mini-HOWTO

shell will let you work nuanced magic of nearly unlimited power with little effort. True fans of the TV
serieswill realize that thereisawarning implied here: The power of the shell can become habit forming, if
not downright addictive, and you can destroy your whole system with no chance of recovery if you mess
things up. Using bash takes you as close to the raw energies of your machine as you can get without
using a C compiler, and the danger rises accordingly.

It took Willow six yearsto become awitch powerful enough to end the world, but it should take you afew
weeks at most to become familiar with the command line. Here are four paragraphs to help you decide
if you want to make the effort:

The power of the command line environment is rooted in its design philosophy: Each tool is designed to
do one job and one job only, but to do that job superbly. Also, almost every tool can be connected to every
other tool to create processing chains with just afew commands. Since these tools are (almost) all general
purpose, you can solve just about any problem with the right combination. With these same commands,
you can write little programs (shell scripts) for everyday tasks. If you look closely at the programs your
distributor includes, you will see that alot of the are in bash. Other script languages such as Python or
Perl might be more powerful, but the command line is always included and has far less overhead.

It islearning the individual tools of the CLI that is somewhat daunting. A lot of commands have strange
namesthat don't even pretend to be mnemonic (the pattern scanning tool awk isnamed for itscreators Aho,
Kernighan, and Weinberger), only make sensein ahistorical context (thetape archiving utilityt ar isnow
used to distribute compressed files), or look like they are typos (unount instead of "unmount”, passwd
instead of "password"). There can be dozens of options for each command, and they can bejust as cryptic.
Because the system was written by hackersin the true sense of the word who wanted the computer to get
the job done and not talk about it, the shell normally will not ask you for confirmation, evenif you tell it to
delete every singlefile on your hard disk. Thisiswhere the end of the world scenario from Buffy comesin.

Once you have mastered the basics of the shell, however, you will get stuff done a lot faster, you will
understand jokes suchasrm -rf /bin/| aden, and you will develop a spring in your step and a
glintin your eye. Thisiswhy even people who are young enough to have been born after the invention of
the mouse develop atendency to use X Windows merely as a comfortable way to open alot of terminal
windows (either xt er mor the less resource-hungry r xvt).

The CLI has just about every tool you'll need: mutt or pi ne for email (real hard-core basket cases use
mai |) wdmor | ynx for surfing, and of course the legendary editors vi (more commonly vi mthese
days) or emacs. The obvious exception to this rule are programs that let you view pictures. But then you
probably aren't interested in that sort of thing anyway, are you.

Setting Up Text Terminals

Basically, you have the same options for text terminals as you do with X terminals. Everything isjust a
bit easier.

For example, you don't have to reboot if you are forced to use a different operation system: Any pro-
gram that lets you log in viat el net (on secure, closed networks) or ssh (everywhere else) will do.
Microsoft Windowsincludesat el net client that is best described as rudimentary; for serious work, try
a free Win32 implementation such as Simon Tathamt's PUTTY http://www.chiark.greenend.org.uk/~sg-
tatham/putty/ [http://www.chiark.greenend.org.uk/~sgtatham/putty/]. Apple users with Mac OS X should
have no problems with their clients.

The Linux Terminal Server Project also has a package for text terminals. The hardware can be as basic as
it gets: Go find yourself a386DX (for those of you who don't remember the Soviet Union or thefirst St ar
Tr ek series: Thisisthe original Pentium's grandaddy). The mainboard will probably not have aPCl slot,
so you'll need an I SA graphics card and an | SA network card. These are so low down the hardware chain
you might have problems finding them, because they are being junked, not sold second hand.

18

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

The Mock Mainframe Mini-HOWTO

There is no reason, though, why your computer has to be advanced enought to understand the TCP/IP
protocol and be part of your local network at all. You can connect just about any computer to the serial
port(s) of the mock mainframe: For example, there is a Linux HOWTO for older Macs by Robert Kies-
ling (The MacTerminal MINI-HOWTO); in an article in The Linux Gazette http://www.linuxgazette.com/
issue70/arndt.html [http://www.linuxgazette.com/issue70/arndt.html], Matthias Arndt shows how to con-
vert an Atari ST into a terminal; Nicholas Petreley explains in IT World.com http://www.itworld.com/
Comp/2384/LWD010511penguin2/ [http://www.itworld.com/Comp/2384/LWD010511penguin2/] how
to use your Palm Pilot. If you can get it connected to the serial port, chances are you can get it running on
Linux. There are specia cards with multiple seria ports for larger setups. Of course, thereisa HOWTO
for that aswell: The Serial HOWTO by David S.Lawyer.

You can aso get special text terminals asindividual machines. David S. Lawyer has written an extensive
Linux HOWTO on the subject (Text-Terminal-HOWTO) that explains how they work, how you set them
up, and why you would want one.

Useful Shell Commands

To get you started on the shell, here are a few commands that are especially useful if you are sharing a
system. These very basic examples were chosen to be useful to normal users.

Play nice. Theni ce command isone of thosethingsthat would maketheworld abetter placeif everybody
used it more often, but nobody does. It allowsyou to lower the scheduling priority of aprocess so that less
important programs don't get in the way of the important ones.

For example, assume you have aWAV recording of your own voice as you sing a song under the shower,
and you want to convert it to the Ogg Vorbis format to distribute to your fans on the Internet, all three of
them. A simple command to do thisis

oggenc -o shower song. ogg shower song. wav

Encoding music formats is a CPU intensive process, so performance will drop. Now, if a few minutes
more or less don't matter, just start the line off with ni ce:

ni ce oggenc -o shower.ogg shower. wav

Now the encoding will be run with alower priority, but you will still haveto wait for it to finish before you
can use the shell again. To have the computer execute a command in the background, add an ampersand
("&") tothe end of the line:

ni ce oggenc -o shower.ogg shower.wav &

The shell will respond by giving you ajob number and a processid (PID), and then will ask you for the
next command.

The ni ce command is a good example of the power that was lost when graphical interfaces became the
default: Thereis no simple way to adjust the priority of a process with a mouse-driven interface.

Dot later. Another way to spread the load is to have an intensive process start at atime when the system
is not being used much. Depending on who is on the system with you, this could be three o'clock in the
morning or any time until two o'clock in the afternoon.

The at command lets you set a time to start a program or any other process that can be run from the
command line. To have our shower song encoded at eight in the evening when you are out watching

19

http://www.linuxgazette.com/issue70/arndt.html
http://www.linuxgazette.com/issue70/arndt.html
http://www.linuxgazette.com/issue70/arndt.html
http://www.itworld.com/Comp/2384/LWD010511penguin2/
http://www.itworld.com/Comp/2384/LWD010511penguin2/
http://www.itworld.com/Comp/2384/LWD010511penguin2/

The Mock Mainframe Mini-HOWTO

meaningful French love films, you enter the command "at" followed by the time you want execution to
start, and then hit the ENTER. Then you type in the command itself, followed by another ENTER, and
finally a CTRL- d to finish the sequence:

me@nyconput er: > at 20:00

war ni ng: conmands will be executed using /bin/sh
> ni ce oggenc -o shower.ogg shower.wav
> <CTRL-d>

job 1 at 2003-09-28 20: 00

Theat command acceptsjust about any timeformat: Americansget to usetheir quaint "08:00pm" notation
instead of "20:00", and there are a whole set of shortcuts like mi dni ght , noon or event eat i ne. at
sends the output of the command to your mailbox.

Do it when you are bored. A close relative of at uses system load, not time of day to determine when
acommand should be run: bat ch saves the execution for atime when the system load has fallen below
a certain value (to see what your system load currently is, run upt i me from a shell or x| oad under X
Windows). The documentation gives this value as 0.8. The syntax for bat ch isbasically the same asfor
at , except that thetimefield is optional.

Odds and Ends

Mock Mainframe Case Studies

Two Peopl e Honme Setup

Mai nfrane: Dual Intel Pentiumll Xeon 450 MHz 512 KByte cache CPU, 384 MByte
PC- 100 RAM PCl graphics card.

Terminal: AMD K6-2 300 MHz, 64 MByte SDRAM

Guardi an: PentiunPro 200 MHz, 64 MByte RAM

O her: AMD Duron 1.0 GHz, 512 MByte DDR RAM (for ganes).

Guardian and Terminals are on two different networks. Regular load: Two people with KDE 3.1 with
kmail, konqueror and/or Mozilla Firebird under SUSE 8.2.

And Finally

Thistext is dedicated to my uncle Gary W. Marklund, who gave me the Unix bug.

20

	The Mock Mainframe Mini-HOWTO
	Table of Contents
	Introduction
	Copyright and License
	Disclaimer
	Credits
	Feedback
	Translations
	Future Versions

	Background
	Why This Text?
	Reasoning and Overview
	What You Should Be Aware Of
	How This Text Is Organized

	The Individual Pieces
	The Mock Mainframe
	The Hardware
	The Software

	The Terminals
	Dual Boot Machines
	Linux Terminals
	Real X Terminals
	X11 Forwarding with ssh
	X Server Programs

	The Support Machines
	Putting the Pieces together
	Security
	Needs revisited
	Security Principles

	Network Hardware
	Network Geography

	Life With Multiple Users
	Shared Resources
	Screen Savers and Other Gimmicks
	Idle Terminals

	Going Hardcore: Non-GUI Systems
	Why the Command Line Is Cool
	Setting Up Text Terminals
	Useful Shell Commands

	Odds and Ends
	Mock Mainframe Case Studies
	And Finally

