
Pocket Linux Guide
David Horton

Pocket Linux Guide
David Horton

Abstract

The Pocket Linux Guide is for anyone interested in learning the techniques of building a GNU/Linux system from
source code. The guide is structured as a project that builds a small diskette-based GNU/Linux system called Pocket
Linux. Each chapter explores a small piece of the overall system explaining how it works, why it is needed and how
to build it. After completing the Pocket Linux project, readers should possess an enhanced knowledge of what makes
GNU/Linux systems work as well as the confidence to explore larger, more complex source-code-only projects.

iii

Table of Contents
Legal Information .. vii

Copyright and License ... vii
Disclaimer .. vii

Introduction ... viii
About Pocket Linux .. viii
Prerequisite Skills ... viii
Project Format ... viii
Help & Support ... viii
Feedback .. ix

1. Project Initiation .. 1
A Brief History of GNU/Linux .. 1
The Goal of Pocket Linux .. 1
Working Within The Constraints ... 1

2. A Simple Prototype ... 3
Analysis ... 3
Design ... 3

Simplification ... 3
Boot Disk .. 3
Root Disk .. 4
CPU Compatibility .. 4

Construction ... 4
Prepare the boot disk media .. 4
Build the GRUB bootloader .. 4
Copy the bootloader files to diskette .. 4
Finish bootloader installation ... 5
Build the Linux kernel ... 5
Copy the kernel to diskette ... 6
Unmount the boot disk ... 6
Prepare the root disk media .. 6
Build BASH ... 6
Copy BASH to the root disk ... 6
Create device files that BASH needs .. 6
Unmount the root disk ... 6

Implementation ... 6
System startup .. 6
Testing what works ... 7
Noting what does not work ... 7
System shutdown .. 7

3. Saving Space .. 8
Analysis ... 8
Design ... 8

Shared Libraries .. 8
Stripped Binaries ... 8
Compressed Root Filesystem ... 8

Construction ... 9
Create a ramdisk ... 9
Rebuild the BASH shell ... 9
Determine which libraries are required .. 9
Copy BASH and its libraries to the ramdisk .. 9
Create a console device .. 10
Compress the ramdisk image ... 10

Pocket Linux Guide

iv

Copy the compressed image to diskette ... 10
Implementation ... 10

System startup .. 10
Verify results .. 11
System shutdown ... 11

4. Some Basic Utilities ... 12
Analysis ... 12
Design ... 12

Determining Required Commands .. 12
Locating Source Code .. 12
Leveraging FHS .. 12
Downloading Source Code .. 13

Construction ... 13
Create a staging area .. 13
Copy contents of phase 2 rootdisk .. 13
Install binaries from GNU coreutils .. 14
Copy additional libraries ... 14
Strip binaries and libraries .. 14
Create a compressed root disk image .. 14
Write the root disk image to floppy .. 15

Implementation ... 15
System startup .. 15
Testing new commands .. 15
System shutdown ... 16

5. Checking and Mounting Disks ... 17
Analysis ... 17
Design ... 17

Determining necessary utilities. .. 17
Finding source code ... 18
Automating fsck and mount .. 18
File dependencies .. 18

Construction ... 19
Install utilities from e2fsprogs ... 19
Install utilities from util-linux .. 19
Check library requirements ... 20
Strip binaries to save space ... 20
Create additional device files ... 20
Create the fstab and mtab files ... 20
Write a script to check and mount local filesystems ... 21
Create a compressed root disk image .. 21
Write the root disk image to floppy .. 21

Implementation ... 21
System startup .. 21
Test the local_fs script ... 22
Create and mount additional filesystems .. 22
System shutdown ... 23

6. Automating Startup & Shutdown .. 24
Analysis ... 24
Design ... 24

Determining necessary utilities .. 24
Obtaining source code .. 25
Checking dependencies ... 25
Designing a simple GRUB configuration file. ... 25
Outlining start-up scripts ... 25

Pocket Linux Guide

v

Construction ... 26
Create a GRUB configuration file .. 26
Install sysvinit utilities ... 26
Create /etc/inittab file ... 26
Create /etc/init.d/rc script .. 27
Modify /etc/init.d/local_fs script ... 27
Create a hostname script ... 28
Create halt & reboot scripts ... 28
Create rcN.d directories and links ... 29
Create the root disk image .. 29
Copy the image to diskette .. 29

Implementation ... 30
System Startup .. 30
Verify success of startup scripts ... 30
System shutdown ... 30

7. Enabling Multiple Users ... 32
Analysis ... 32
Design ... 32

The login process .. 32
Obtaining source code .. 32
Creating support files ... 32
Dependencies .. 33
Assigning ownership and permissions ... 33

Construction ... 34
Verify presence of getty and login .. 34
Modify inittab for multi-user mode ... 34
Create tty devices .. 35
Create support files in /etc .. 35
Copy required libraries ... 36
Set directory and file permissions ... 36
Create the root disk image .. 37
Copy the image to diskette .. 37

Implementation ... 37
System Startup .. 37
Add a new user to the system .. 37
Test the new user's ability to use the system .. 37
System shutdown ... 38

8. Filling in the Gaps ... 39
Analysis ... 39
Design ... 39

more .. 39
More device files .. 40
ps, sed & ed ... 40

Construction ... 40
Write a "more" script ... 40
Create additional device files ... 41
Install ps .. 41
Install sed ... 41
Install ed .. 42
Strip binaries to save space ... 42
Ensure proper permissions .. 42
Create the root disk image .. 42
Copy the image to diskette .. 42

Implementation ... 42

Pocket Linux Guide

vi

System startup .. 42
Test the "more" script .. 42
Use ps to show running processes .. 43
Run a simple sed script .. 43
Test the "ed" editor .. 43
System shutdown ... 43

9. Project Wrap Up .. 44
Celebrating Accomplishments .. 44
Planning Next Steps ... 44

A. Hosting Applications ... 45
Analysis ... 45
Design ... 45

Support for audio hardware ... 45
Creating space for the program .. 45
Accessing audio files ... 46
Other required files .. 47
Summary of tasks .. 47

Construction ... 47
Create an enhanced boot disk .. 47
Create an enhanced root disk ... 48
Create a compressed /usr disk for mp3blaster ... 50
Create a data diskette for testing .. 51

Implementation ... 51
System Startup .. 51
Verify that the /usr diskette loaded properly ... 51
Check the audio device initialization ... 51
Test audio output .. 51
Play a sample file .. 51
System shutdown ... 52

B. GNU Free Documentation License ... 53
PREAMBLE ... 53
APPLICABILITY AND DEFINITIONS .. 53
VERBATIM COPYING ... 54
COPYING IN QUANTITY ... 54
MODIFICATIONS .. 55
COMBINING DOCUMENTS ... 56
COLLECTIONS OF DOCUMENTS ... 57
AGGREGATION WITH INDEPENDENT WORKS ... 57
TRANSLATION ... 57
TERMINATION ... 57
FUTURE REVISIONS OF THIS LICENSE ... 57
ADDENDUM: How to use this License for your documents ... 58

vii

Legal Information
Copyright and License

This document, Pocket Linux Guide, is copyright (c) 2003 - 2005 by David Horton. Permission is granted
to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available at the end
of this document.

Linux is a registered trademark of Linus Torvalds.

Disclaimer
This documentation is provided as-is with no warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Use the
concepts, examples and information at your own risk. The author(s) do not take any responsibility for
damages that may arise from the use of this document.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of a term in
this document should not be regarded as affecting the validity of any trademark or service mark. Naming
of particular products or brands should not be seen as endorsements.

viii

Introduction
About Pocket Linux

The Pocket Linux Guide demonstrates how to build a small console-based GNU/Linux system using only
source code and a couple of diskettes. It is intended for Linux users who would like to gain a deeper
understanding about how their system works beneath the shroud of distribution specific features and tools.

Prerequisite Skills
This guide is intended for intermediate to advanced Linux users. It is not intentionally obscure, but certain
assumptions about the readers skill level are made. Success with this guide depends in part on being able
to perform the following tasks:

• Use basic shell commands

• Reference man and info pages

• Build a custom Linux kernel

• Compile source code using make and related tools

Project Format
The Pocket Linux Guide takes a hands-on approach to learning. The guide is written with each chap-
ter building a piece of an overall project. Chapters are further broken into sections of Analysis, Design,
Construction and Implementation. This format is derived from Rapid Application Development (RAD)
methodology. Without going into detail about design methodologies, the sections may be summed up as
follows.

• The Analysis section gives a high-level overview of what is to be accomplished in each chapter. It will
introduce the tasks that need to be completed and why they are important to the overall system.

• The Design section defines the source code packages, files and configuration necessary to address the
requirements set forth in the Analysis section. Much of the theory of why certain system files exist and
what their purpose is can be found here.

• The Construction section is where all the hands-on action takes place. This section goes into detail about
building source code and configuring the system files.

• The Implementation section will test the proper operation of the project at the end of each chapter. Often
there are a few shell commands to perform and samples of expected screen outputs are given.

Readers interested in learning more about RAD may want to consult a textbook covering systems analy-
sis and design or visit the following University of California, Davis website on the subject: http://
sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm.

Help & Support
Readers are encouraged to visit the Pocket Linux Resource Site at http://pocket-linux.sourceforge.net/
[http://pocket-linux.sourceforge.net]. The resource site is home to:

http://sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm
http://sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm
http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

Introduction

ix

• Information about the Pocket Linux mailing list.

• A web-based troubleshooting forum where readers can ask questions and give tips to others.

• A collection of diskette images for various chapters.

• Additional projects that may be of interest to Pocket Linux Guide readers.

Feedback
For technical questions about Pocket Linux please use the mailing list or the troubleshooting forum on the
resource site [http://pocket-linux.sourceforge.net]. General comments and suggestions may be sent to the
mailing list or emailed to the author directly.

http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

1

Chapter 1. Project Initiation
A Brief History of GNU/Linux

In the early 90's GNU/Linux systems consisted of little more than a beta-quality Linux kernel and a small
collection of software ported from the GNU project. It was a true hacker's operating system. There were
no CD-ROM's or GUI installation tools; everything had to be compiled and configured by the end user.
Being a Linux Expert meant knowing your system inside and out.

Toward the middle of the decade several GNU/Linux distributions began appearing. One of the first was
Slackware [http://www.slackware.org] in 1993 and since then there have been many others. Even though
there are many "flavors" of Linux today, the main purpose of the distribution remains the same. The
distribution automates many of the tasks involved in GNU/Linux installation and configuration taking the
burden off of the system administrator. Being a Linux Expert now means knowing which button to click
in the GUI administration tool.

Recently there has been a yearn for a return to the "good old days" of Linux when men were men, sysad-
mins were hardcore geeks and everything was compiled from source code. A notable indication of this
movement was the publication of the Linux-From-Scratch-HOWTO version 1.0 by Gerard Beekmans in
1999. Being a Linux Expert once again means knowing how to do it yourself.

For more historical information, see Ragib Hasan's "History of Linux" at http://netfiles.uiuc.edu/rhasan/
linux

The Goal of Pocket Linux
The purpose of Pocket Linux is to support and encourage people who wish to explore Linux by building a
GNU/Linux system from nothing but source code. Pocket Linux is not intended to be a full featured system,
but rather to give the reader a taste of what is involved in building an operating system from source code.
After completing the Pocket Linux system the reader should have enough knowledge to confidently build
almost any project using only source code. Given this direction we can put a few constraints on the project.

• The main focus should be learning. The project should not just describe how to do something, it should
also describe why it should be done.

• The required time commitment should be minimal and manageable.

• The project should not require any investment in additional hardware or reconfiguration of existing
hardware to set up a lab environment.

• Readers should not need to know any programming languages in order to complete the project.

• To remain true to the spirit of GNU/Linux, all software used in the project should be covered under the
GNU/GPL or another, similarly liberal, open-source license.

Working Within The Constraints
The Pocket Linux project gets its name from the fact that the bulk of the project fits onto two diskettes
making it possible to carry the entire, working system around in one's pocket. This has the advantage of not
requiring any additional hardware since any PC can be booted from the diskettes without disrupting any
OS that exists on the hard drive. Using diskettes also partially addresses the aspect of time commitment,

http://www.slackware.org
http://www.slackware.org
http://netfiles.uiuc.edu/rhasan/linux
http://netfiles.uiuc.edu/rhasan/linux

Project Initiation

2

because the project size and complexity is necessarily limited by the 1.44 Megabyte size of the installation
media.

To further reduce the time commitment, the Pocket Linux project is divided into several phases, each one
chapter in length. Each phase builds only a small piece of the overall project, but at the same time the
conclusion of each chapter results in a self-contained, working system. This step-by-step approach should
allow readers to pace themselves and not feel the need to rush to see results.

Chapters are further subdivided into four sections. The first two sections, analysis and design, focus on
the theory of what is to be accomplished in each phase and why. The last two sections, construction and
implementation, detail the steps needed to do the actual building. Advanced readers, who may be familiar
with the theories laid out in a particular chapter are encouraged to gloss over the analysis and design
sections in the interest of time. The separation of theory from hands-on exercises should allow readers of
all skill levels to complete the project without feeling either completely lost or mired in too much detail.

Finally, the Pocket Linux project will strive to use GNU/GPL software when possible and other open-
source licensed software when there is no GNU/GPL alternative. Also, Pocket Linux will never require
any programming more complex than a BASH shell script.

3

Chapter 2. A Simple Prototype

Analysis
Since this is the first phase of the project it will be kept very simple. The goal here is not to create the
ultimate GNU/Linux system on the first try. Instead, we will be building a very minimal, working system
to be used as a building block in subsequent phases of the project. Keeping this in mind, we can list a
few goals for phase one.

• Keep it simple to avoid stressing out.

• Build something that works for instant gratification.

• Make something that it is useful in later phases of the project.

Design

Simplification
Take a moment to skim through the Bootdisk-HOWTO or the From-PowerUp-to-BASH-Prompt-HOW-
TO. These HOWTO documents can be found online at http://www.tldp.org/docs.html#howto. Both doc-
uments offer an excellent view of what it takes to get a GNU/Linux system up and running. There is also
a lot of information to digest. Remember that one of our goals is, "keep it simple to avoid stressing out,"
so we want to ignore everything but the absolutely critical pieces of a boot / root diskset.

Basically it boils down to the following required items:

• A boot loader

• The Linux kernel

• A shell

• Some /dev files

We don't even need an init daemon. The kernel can be told to run the shell directly by passing it an option
through the boot loader.

For easy construction we will build a two-disk boot / root set rather than trying to get everything onto a
single diskette. The boot loader and kernel will go on the boot disk and the shell will reside on the root disk.

Boot Disk
For the boot disk we simply need to install the GRUB bootloader and a Linux kernel. We will need to
use a kernel that does not require modules for the hardware we need to access. Mainly, it should have
compiled-in support for the floppy drive, ram disk, second extended filesystem, proc filesystem, ELF
binaries, and a text-based console. If such a kernel is not available, it will need to be built from source code.
Kwan Lowe's Kernel Rebuild Guide [http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html] is
a good reference for this task, however we can ignore the sections that deal with modules and the initial
ramdisk.

http://www.tldp.org/docs.html#howto
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

A Simple Prototype

4

Root Disk
For the root disk we will need a floppy that has been prepared with a filesystem. We will also need a BASH
shell that is statically-linked so we can avoid the additional complexities of shared libraries. The configure
program in the BASH source code recognizes the --enable-static-link option for this feature.
We will also be using the --enable-minimal-config option to keep the BASH binary down to
a manageable size. Additional requirements for the root disk are a /dev directory and a device file for
the console. The console device is required for BASH to be able to communicate with the keyboard
and video display.

CPU Compatibility
There is one other, less obvious requirement to keep in mind and that is CPU compatibility. Each generation
of CPU features a more complex architecture than its predecessor. Late generation chips have additional
registers and instructions when compared to an older 486 or 386. So a kernel optimized for a new, fast 6x86
machine will not run on an older box. (See the README file in the Linux kernel source code for details.)
A BASH shell built for a 6x86 will probably not run on an older processor either. To avoid this problem,
we can choose the 386 as a lowest common denominator CPU and build all the code for that architecture.

Construction
In this section, we will be building the actual boot disk and root disk floppies. Lines preceded by bash#
indicate a shell command and lines starting with grub> indicate a command typed within the grub shell.

Prepare the boot disk media
Insert a blank diskette labeled "boot disk".

Note

It may be necessary to erase the "blank" diskette if it comes factory pre-formatted for another,
non-Linux operating system. This can be done using the command dd if=/dev/zero of=/dev/fd0
bs=1k count=1440

bash# mke2fs -m0 /dev/fd0
bash# mount /dev/fd0 /mnt

Build the GRUB bootloader
Get the GRUB source code from ftp://alpha.gnu.org/gnu/grub/ and unpack it into the /usr/src directory.

Configure and build the GRUB source code for an i386 processor by using the following commands:

bash# cd /usr/src/grub-0.95
bash# export CC="gcc -mcpu=i386"
bash# ./configure --host=i386-pc-linux-gnu --without-curses
bash# make

Copy the bootloader files to diskette
Normally, after compiling source code, one would use the command make install to copy the finished
files to their proper destinations in the filesystem. However, using make install does not work well with
small media like the floppy disks we are using. The problem is that there are many files in a package

ftp://alpha.gnu.org/gnu/grub/

A Simple Prototype

5

besides the actual binaries that get the job done. For example, there are often man or info pages that provide
documentation. These extra files can take up more space than we can spare on the diskette. We can work
around this limitation by copying essential files manually rather than using make install.

For GRUB to boot we will need to copy the stage1 and stage2 bootloader files to the /boot/grub
directory on the boot floppy.

bash# mkdir -p /mnt/boot/grub
bash# cp /usr/src/grub-0.95/stage1/stage1 /mnt/boot/grub
bash# cp /usr/src/grub-0.95/stage2/stage2 /mnt/boot/grub

Finish bootloader installation
Once the bootloader's files are copied to the boot disk we can enter the grub shell to finish the installation.

bash# /usr/src/grub-0.95/grub/grub
grub> root (fd0)
grub> setup (fd0)
grub> quit

Build the Linux kernel
The steps for building the kernel were tested using Linux kernel version 2.4.26 and should work any 2.4.x or
2.6.x kernel. The latest version of the kernel source code may be downloaded from http://www.kernel.org/
or one of its mirrors.

Note

The instructions below are very brief and are intended for someone who has previous experience
building custom kernels. A more detailed explanation of the kernel building process can be found
in the Kernel Rebuild Guide [http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html]
by Kwan Lowe.

bash# cd /usr/src/linux
bash# make menuconfig

Be sure to configure support for the following:

• 386 processor

• Console on virtual terminal (2.4.x kernels only)

• ELF binaries

• Floppy disk

• proc filesystem

• RAM disk with a default size of 4096K

• Second extended (ext2) filesystem

• VGA console

bash# make dep
bash# make clean
bash# make bzImage

http://www.kernel.org/
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

A Simple Prototype

6

Copy the kernel to diskette
bash# cp /usr/src/linux/arch/i386/boot/bzImage /mnt/boot/vmlinuz

Unmount the boot disk
bash# cd /
bash# umount /mnt

Prepare the root disk media
Insert a blank diskette labeled "root disk".

bash# mke2fs -m0 /dev/fd0
bash# mount /dev/fd0 /mnt

Build BASH
Get the bash-3.0 source code package from ftp://ftp.gnu.org/gnu/bash/ and untar it into the /usr/src
directory.

Build BASH for an i386 CPU with the following commands:

bash# cd /usr/src/bash-3.0
bash# export CC="gcc -mcpu=i386"
bash# ./configure --enable-static-link \
 --enable-minimal-config --host=i386-pc-linux-gnu
bash# make
bash# strip bash

Copy BASH to the root disk
bash# mkdir /mnt/bin
bash# cp bash /mnt/bin/bash
bash# ln -s bash /mnt/bin/sh

Create device files that BASH needs
bash# mkdir /mnt/dev
bash# mknod /mnt/dev/console c 5 1

Unmount the root disk
bash# cd /
bash# umount /mnt

Implementation

System startup
Follow these steps to boot the system:

ftp://ftp.gnu.org/gnu/bash/

A Simple Prototype

7

• Restart the PC with the boot disk in the floppy drive.

• When the grub> prompt appears, type kernel (fd0)/boot/vmlinuz init=/bin/sh
root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1 and press Enter.

• After the kernel loads, type boot and press Enter.

• Insert the root disk when prompted.

If all goes well the screen should look something like the example shown below.

GNU GRUB version 0.95

grub> kernel (fd0)/boot/vmlinuz init=/bin/sh root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1
 [Linux-bzImage, setup=0xc00, size=0xce29b]

grub> boot

Linux version 2.4.26
..
.. [various kernel messages]
..
VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER
RAMDISK: ext2 filesystem found at block 0
RAMDISK: Loading 1440 blocks [1 disk] into ram disk... done.
VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 178k freed
_

Testing what works
Try out a few of BASH's built-in commands to see if things are working properly.

bash# echo "Hello World"
bash# cd /
bash# pwd
bash# echo *

Noting what does not work
Try out a few other familiar commands.

bash# ls /var
bash# mkdir /var/tmp

Notice that only commands internal to BASH actually work and that external commands like ls and mkdir
do not work at all. This shortcoming is something that can be addressed in a future phase of the project.
For now we should just enjoy the fact that our prototype boot / root diskset works and that it was not all
that hard to build.

System shutdown
Remove the diskette from fd0 and restart the system using CTRL-ALT-DELETE.

8

Chapter 3. Saving Space
Analysis

One of the drawbacks in the prototype phase of the project was that the diskset was not all that useful. The
only commands that worked were the ones built into the BASH shell. We could improve our root disk by
installing commands like cat, ls, mv, rm and so on. Unfortunately, we are short on space. The current root
disk has no shared libraries so each utility would have to be statically-linked just like the BASH shell. A
lot of big binaries together with a static shell will rapidly exceed the tiny 1.44M of available disk space.
So our main goal in this phase should be to maximize space savings on the root disk and pave the way
for expanded functionality in the next phase.

Design
Take another look at the Bootdisk-HOWTO and notice how many utilities can be squeezed onto a 1.44M
floppy. There are three things that make this possible. One is the use of shared libraries. The second is
stripped binaries. And the third is the use of a compressed filesystem. We can use all of these techniques
to save space on our root disk.

Shared Libraries
First, in order to use shared libraries we will need to rebuild the BASH shell. This time we will configure
it without using the --enable-static-link option. Once BASH is rebuilt we need to figure out
which libraries it is linked with and be sure to include them on the root disk. The ldd command makes this
job easy. By typing ldd bash on the command-line we can see a list of all the shared libraries that BASH
uses. As long as all these libraries are copied to the root disk, the new BASH build should work fine.

Stripped Binaries
Next, we should strip any binaries that get copied to the root disk. The manpage for strip does not give
much description of what it does other than to say, "strip discards all symbols from the object files." It
seems like removing pieces of a binary would render it useless, but this is not the case. The reason it works
is because a large number of these discarded symbols are used for debugging. While debugging symbols
are very helpful to programmers working to improve the code, they do not do much for the average end-
user other than take up more disk space. And since space is at a premium, we should definitely remove as
many symbols as possible from BASH and any other binaries before we copy over them to the ramdisk.

The process of stripping files to save space also works with shared library files. But when stripping li-
braries it is important to use the --strip-unneeded option so as not to break them. Using --strip-
unneeded shrinks the file size, but leaves the symbols needed for relocation intact which is something
that shared libraries need to function properly.

Compressed Root Filesystem
Finally, we can tackle the problem of how to build a compressed root filesystem. The Bootdisk-HOWTO
suggests three ways of constructing a compressed root filesystem using either a ramdisk, a spare hard
drive partition or a loopback device. This project will concentrate on using the ramdisk approach. It seems
logical that if the root filesystem is going to be run from a ramdisk, it may as well be built on a ramdisk.
All we have to do is create a second extended filesystem on a ramdisk device, mount it and copy files
to it. Once the filesystem is populated with all the files that the root disk needs, we simply unmount it,
compress it and write it out to floppy.

Saving Space

9

Note

For this to work, we need to make sure the system used for building has ramdisk support. If
ramdisk is not available it is also possible to use a loopback device. See the Bootdisk-HOWTO
for more information on using loopback devices.

Construction
This section is written using ramdisk seven (/dev/ram7) to build the root image. There is nothing par-
ticularly special about ramdisk seven and it is possible to use any of the other available ramdisks provided
they are not already in use.

Create a ramdisk
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt

Rebuild the BASH shell
bash# cd /usr/src/bash-3.0
bash# make distclean
bash# export CC="gcc -mcpu=i386"
bash# ./configure --enable-minimal-config --host=i386-pc-linux-gnu
bash# make
bash# strip bash

Determine which libraries are required
bash# ldd bash

View the output from the ldd command. It should look similar to the example below.

bash# ldd bash
 libdl.so.2 => /lib/libdl.so.2 (0x4001d000)
 libc.so.6 => /lib/libc.so.6 (0x40020000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Note

Some systems may have a slightly different library set up. For example, you may see libc.so.6
=> /lib/tls/libc.so.6 rather than libc.so.6 => /lib/libc.so.6 as shown in
the example. If your ldd output does not match the example then use the path given by your ldd
command when completing the next step.

Copy BASH and its libraries to the ramdisk
bash# mkdir /mnt/bin
bash# cp bash /mnt/bin
bash# ln -s bash /mnt/bin/sh
bash# mkdir /mnt/lib
bash# strip --strip-unneeded -o /mnt/lib/libdl.so.2 /lib/libdl.so.2

Saving Space

10

bash# strip --strip-unneeded -o /mnt/lib/libc.so.6 /lib/libc.so.6
bash# strip --strip-unneeded -o /mnt/lib/ld-linux.so.2 /lib/ld-linux.so.2
bash# chmod +x /mnt/lib/ld-linux.so.2

Note

Using strip -o might seem an odd way to copy library files from the development system to the
ramdisk. What it does is strip the symbols while the file is in transit from the source location to
the destination. This has the effect of stripping symbols from the library on the ramdisk without
altering the libraries on the development system. Unfortunately file permissions are lost when
copying libraries this way which is why the chmod +x command is then used to set the execute
flag for the rootdisk's dynamic loader.

Create a console device
bash# mkdir /mnt/dev
bash# mknod /mnt/dev/console c 5 1

Compress the ramdisk image
bash# cd /
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase2-image bs=1k count=4096
bash# gzip -9 ~/phase2-image

Copy the compressed image to diskette
Insert the floppy labeled "root disk" into drive fd0.

bash# dd if=~/phase2-image.gz of=/dev/fd0 bs=1k

Implementation
Successful implementation of this phase is probably the most difficult part of the Pocket Linux Guide.
If you need help getting things to work please visit the Pocket Linux Guide Resource Site [http://pock-
et-linux.sourceforge.net] to browse the troubleshooting forum and subscribe to the mailing list.

System startup
Follow these steps to boot:

• Restart the PC using the boot disk from the previous chapter.

• At the grub> prompt, type kernel (fd0)/boot/vmlinuz init=/bin/sh root=/dev/
fd0 load_ramdisk=1 prompt_ramdisk=1 and press Enter.

• Type boot at the grub> prompt and press Enter.

• Insert the new, compressed root disk when prompted.

The screen output should be similar to the following example:

GNU GRUB version 0.95

http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

Saving Space

11

grub> kernel (fd0)/boot/vmlinuz init=/bin/sh root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1
 [Linux-bzImage, setup=0xc00, size=0xce29b]

grub> boot

Linux version 2.4.26
..
.. [various kernel messages]
..
VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 178k freed
_

Verify results
If the implementation was successful, this new root disk should behave exactly like the root disk from the
previous chapter. The key difference is that this compressed root disk has much more room to grow and
we will put this extra space to good use in the next phase of the project.

System shutdown
Remove the diskette from fd0 and restart the system using CTRL-ALT-DELETE.

12

Chapter 4. Some Basic Utilities
Analysis

In the previous chapter it might seem like we did not accomplish very much. A lot of energy was expended
redesigning the root disk, but the functionality is basically the same as in the initial prototype phase. The
root disk still does not do very much. But we did make significant improvements when it comes to space
savings. In this chapter we will put that extra space to good use and start cramming the root disk with as
many utilities as it can hold.

The first two root disks we built only had shell built-in commands like echo and pwd. This time it would
be nice to have some of the commonly used external commands like cat, ls, mkdir, rm and such on the
root disk. Keeping this in mind we can define the goals for this phase as follows:

• Retain all of the functionality from the previous root disk.

• Add some of the commonly used external commands.

Design

Determining Required Commands
The first question that might come to mind is, "How do we know which commands are needed?" It is
possible to just start with cat and ls then install other commands as we discover a need for them. But this
is terribly inefficient. We need a plan or a blueprint to work from. For this we can turn to the Filesystem
Hierarchy Standard (FHS) available from http://www.pathname.com/fhs/. The FHS dictates which com-
mands should be present on a Linux system and where they should be placed in the directory structure.

Locating Source Code
The next logical question is, "Now that we know what we need, where do we get the source code?" One
way to find the answer to this question is to check the manpages. We can either search the manpages
included with one of the popular GNU/Linux distributions or use one of the manpage search engines listed
at http://www.tldp.org/docs.html#man. One thing that should tip us off as to where to find the source code
for a particular command is the email address listed for reporting bugs. For example the cat manpage lists
bug-textutils@gnu.org. From this email address we can deduce that cat is part of the textutils package
from GNU [http://gnu.org].

Leveraging FHS
So let's look at the FHS requirements for the /bin directory. The first few commands in the list are cat,
chgrp, chmod, chown and cp. We already know that cat is part of GNU's textutils. Using the next few
commands as keywords in a manpage search we discover that we need GNU's fileutils package for chmod,
chgrp, chown and cp. In fact quite a few of the commands in /bin come from GNU's fileutils. The date
command also comes from a GNU package called sh-utils. So a good way to tackle the problem of finding
source code might be to group the commands together by package as shown below.

• The BASH shell -- echo, false, pwd, sh, true

• GNU textutils -- cat

http://www.pathname.com/fhs/
http://www.tldp.org/docs.html#man
http://gnu.org
http://gnu.org

Some Basic Utilities

13

• GNU fileutils -- chgrp, chmod, chown, cp, dd, df, ln, ls, mkdir, mknod, mv, rm, rmdir, sync

• GNU sh-utils -- date, hostname, stty, su, uname

These four packages do not contain all of the commands in the /bin directory, but they do represent of
over 70% of them. That should be enough to accomplish our goal of adding some of the commonly used
external commands. We can worry about the other commands in later phases of the project.

Downloading Source Code
To fetch the source code we simply need to connect to GNU's FTP site [ftp://ftp.gnu.org/gnu] and navigate
to the appropriate package directory.

When we get to the directory for textutils there are several versions available. There is also a note informing
us that the package has been renamed to coreutils. The same message about coreutils appears in the fileutils
and sh-utils directories as well. So instead of downloading three separate packages we can get everything
in one convenient bundle in the coreutils directory.

Construction
Rather than copying files directly to the ramdisk, we can make things easier by setting up a staging area.
The staging area will give us room to work without worrying about the space constraints of the ramdisk.
It will also provide a way to save our work and make it easier to enhance the rootdisk in later phases of
the project.

The staging procedure will work like this:

1. Create a directory structure as defined in the FHS.

2. Copy in the files from phase 2's root disk.

3. Build the new package from source code.

4. Install files into the correct FHS directories.

5. Strip the binaries to save space.

6. Check library dependencies.

7. Copy to the whole directory structure to the ramdisk.

8. Compress the ramdisk and write it out to floppy.

Create a staging area
bash# mkdir ~/staging
bash# cd ~/staging
bash# mkdir bin boot dev etc home lib mnt opt proc root sbin tmp usr var
bash# mkdir var/log var/run

Copy contents of phase 2 rootdisk
bash# dd if=~/phase2-image.gz | gunzip -c > /dev/ram7
bash# mount /dev/ram7 /mnt

ftp://ftp.gnu.org/gnu
ftp://ftp.gnu.org/gnu

Some Basic Utilities

14

bash# cp -dpR /mnt/* ~/staging
bash# umount /dev/ram7
bash# rmdir ~/staging/lost+found

Install binaries from GNU coreutils
Download a recent version of coreutils from ftp://ftp.gnu.org/gnu/coreutils/

bash# cd /usr/src/coreutils-5.2.1
bash# export CC="gcc -mcpu=i386"
bash# ./configure --host=i386-pc-linux-gnu
bash# make
bash# cd src
bash# cp cat chgrp chmod chown cp date dd df ~/staging/bin
bash# cp hostname ln ls mkdir mkfifo mknod ~/staging/bin
bash# cp mv rm rmdir stty su sync uname ~/staging/bin

Copy additional libraries
Check library requirements by using ldd on some of the new binaries.

bash# ldd ~/staging/bin/cat
bash# ldd ~/staging/bin/ls
bash# ldd ~/staging/bin/su
bash# ls ~/staging/lib

Note the differences in the required libraries, as shown by the ldd command, and the libraries present in
the staging area, as shown by the ls command, then copy any missing libraries to the staging area.

bash# cp /lib/librt.so.1 ~/staging/lib
bash# cp /lib/libpthread.so.0 ~/staging/lib
bash# cp /lib/libcrypt.so.1 ~/staging/lib

Strip binaries and libraries
bash# strip ~/staging/bin/*
bash# strip --strip-unneeded ~/staging/lib/*

Create a compressed root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase3-image bs=1k count=4096
bash# gzip -9 ~/phase3-image

Note

The process for creating the compressed root disk image will change very little throughout the
remaining chapters. Writing a small script to handle this function can be a great time saver.

ftp://ftp.gnu.org/gnu/coreutils/

Some Basic Utilities

15

Write the root disk image to floppy
Insert the diskette labeled "root disk" into drive fd0.

bash# dd if=~/phase3-image.gz of=/dev/fd0 bs=1k

Implementation
We will need to have a read-write filesystem in order for some of the commands to work. The kernel's
normal behavior is to mount root as read-only, but we can change this using a kernel option. By passing
the kernel the rw option before init=/bin/sh we will get a read-write root filesystem.

System startup
Follow these steps to get the system running.

• Boot the PC from using the GRUB boot disk.

• At the grub> prompt, type kernel (fd0)/boot/vmlinuz rw init=/bin/sh root=/
dev/fd0 load_ramdisk=1 prompt_ramdisk=1.

• Verify that you remembered to add the rw parameter and press Enter.

• Type boot and press Enter.

• Insert the recently created root disk when prompted.

The terminal display should look similar to the example below.

GNU GRUB version 0.95

grub> kernel (fd0)/boot/vmlinuz rw init=/bin/sh root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1
 [Linux-bzImage, setup=0xc00, size=0xce29b]

grub> boot

Linux version 2.4.26
..
.. [various kernel messages]
..
VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem) read-write.
Freeing unused kernel memory: 178k freed
_

Testing new commands
Now that the system is up and running, try using some of the new commands.

bash# uname -a
bash# ls /etc
bash# echo "PocketLinux" > /etc/hostname

Some Basic Utilities

16

bash# hostname $(cat /etc/hostname)
bash# uname -n
bash# mkdir /home/stuff
bash# cd /home/stuff

If everything goes well the commands like cat, ls and hostname should work now. Even mkdir should
work since the root filesystem is mounted read-write. Of course since we are using a ramdisk, any changes
will be lost once the PC is reset.

System shutdown
Remove the diskette from fd0 and restart the system using CTRL-ALT-DELETE.

17

Chapter 5. Checking and Mounting
Disks

Analysis
In the previous chapter we added many new commands by installing coreutils and as a result the root disk
has a lot more functionality. But there are still a few things lacking. One thing that really stands out is that
there was no way to mount disks. In order to get a read-write root filesystem we had to resort to passing the
rw kernel parameter at the grub> prompt. This is fine for an emergency situation, but a normal system
boot process should do things differently.

Most GNU/Linux distributions take several steps to mount filesystems. Watching the boot process or
digging into the startup scripts on one of the popular Linux distributions reveals the following sequence
of events:

1. The kernel automatically mounts the root filesystem as read-only.

2. All local filesystems are checked for errors.

3. If filesystems are clean, root is remounted as read-write.

4. The rest of the local filesystems are mounted.

5. Network filesystems are mounted.

So far our Pocket Linux system can do step one and that is it. If we want to have a professional looking
boot / root diskset we will have to do better than one out of five. In this phase of the project we will work
on steps two and three. Steps four and five can wait. Since this is a diskette-based system, there really are
no other filesystems to mount besides root.

Taking into account all of the above information, the goals for this phase are defined as follows:

• A way to check filesystem integrity.

• The ability to mount filesystems.

• A script to automate checking and mounting of local filesystems.

Design

Determining necessary utilities.
We can use the Filesystem Hierarchy Standard (FHS) document to help find the names of utilities we
need and where they reside in the directory structure. The FHS /sbin directory lists fsck and some-
thing called fsck.* for checking filesystems. Since we are using a Second Extended (ext2) filesystem the
fsck.* becomes fsck.ext2 for our purposes. Mounting filesystems is done using the commands mount and
umount in the /bin directory. However, the name of a script to automatically mount local filesystems
cannot be found. On most systems this type of script is in the /etc directory, but while FHS does list
requirements for /etc, it does not currently make recommendations for startup scripts. Several GNU/

Checking and Mounting Disks

18

Linux distributions use /etc/init.d as the place to hold startup scripts so we will put our filesystem
mounting script there.

Finding source code
In the previous chapter we used manpages to help us find source code. In this chapter we will use a tool
called the Linux Software Map (LSM). LSM is a database of GNU/Linux software that tracks such things
as package name, author, names of binaries that make up the package and download sites. Using an LSM
search engine we can locate packages using command names as keywords.

If we search Ibiblio's Linux Software Map (LSM) at http://www.ibiblio.org/pub/Linux/ for the keyword
"fsck" we get a large number of matches. Since we are using a Second Extended filesystem, called ext2
for short, we can refine the search using "ext2" as a keyword. Supplying both keywords to the LSM
search engine comes up with a package called e2fsprogs. Looking at the LSM entry for e2fsprogs we
find out that this package contains the utilities e2fsck, mke2fs, dumpe2fs, fsck and more. We also find
out that the LSM entry for e2fsprogs has not been updated for a while. There is almost certainly a newer
version out there somewhere. Another good Internet resource for source code is SourceForge at http://
sourceforge.net/. Using the keyword "e2fsprogs" in the SourceForge search engine results in a much newer
version of e2fsprogs.

Finding fsck was quite an adventure, but now we can move on to finding mount and umount. A search on
LSM comes up with a number of matches, but most of them point to various versions of a package called
util-linux. All we have to do is scroll through and pick the most recent release. The LSM entry for util-
linux lists a lot of utilities besides just mount and umount. We should definitely scan through the list to
see if any of the other util-linux commands show up in the FHS requirements for /bin and /sbin.

Below is a list of packages we have gathered so far and the utilities that match up with FHS.

• e2fsprogs -- fsck, fsck.ext2 (e2fsck), mkfs.ext2 (mke2fs)

• util-linux -- dmesg, getty (agetty), kill, login, mount, swapon, umount

Automating fsck and mount
Now that we have fsck and mount commands we need to come up with a shell script to automate checking
and mounting the local filesystems. An easy way to do this would be to write a short, two line script
that calls fsck and then mount. But, what if the filesystems are not clean? The system should definitely
not try to mount a corrupted filesystem. Therefore we need to devise a way of determining the status of
the filesystems before mounting them. The manpage for fsck gives some insight into how this can be
accomplished using return codes. Basically, if fsck returns a code of zero or one it means the filesystem
is okay and a return code of two or greater means some kind of manual intervention is needed. A simple
if-then statement could evaluate the fsck return code to determine whether or not the filesystem should be
mounted. For help on writing shell scripts we can turn to the BASH(1) manpage and the Advanced-BASH-
Scripting-Guide. Both references are freely available from the Linux Documentation Project web site at
http://www.tldp.org/.

File dependencies
The last thing to do is to figure out if any other files besides the binaries are needed. We learned about
using ldd to check for library dependencies in the last phase of the project and we will use it to check the
utilities in this phase too. There are also some other files that fsck and mount will need and the fsck(8) and
mount(8) manpages give some insight into what those files are. There is /etc/fstab that lists devices
and their mount points, /etc/mtab that keeps track of what is mounted, and a number of /dev files
that represent the various disks. We will need to include all of these to have everything work right.

http://www.ibiblio.org/pub/Linux/
http://sourceforge.net/
http://sourceforge.net/
http://www.tldp.org/

Checking and Mounting Disks

19

/etc/fstab

The /etc/fstab file is just a simple text file that can be created with any editor. We will need an
entry for the root filesystem and for the proc filesystem. Information about the format of this file can be
found in the fstab(5) manpage or by looking at the /etc/fstab file on any of the popular GNU/Linux
distributions.

/etc/mtab

The /etc/mtab file presents a unique challenge, because it does not contain static information like
fstab. The mtab file tracks mounted filesystems and therefore its contents change from time to time.
We are particularly interested in the state of mtab when the system first starts up, before any filesystems
are mounted. At this point /etc/mtab should be empty so we will need to configure a startup script to
create an empty /etc/mtab before any filesystems are mounted. But it is not possible to create any files
in the /etc directory because / is read-only at startup. This creates a paradox. We cannot create an empty
mtab, because the / filesystem is not mounted as writable and we should not mount any filesystems until
we have created an empty mtab. In order to sidestep this problem we need to do the following:

1. Remount / as read-write, but use the -n option so that mount does not attempt to write an entry to /
etc/mtab which is read-only at this point.

2. Create an empty /etc/mtab file now that the filesystem is writable.

3. Remount / as read-write again, this time using the -f option so that an entry is written into /etc/
mtab, but / is not actually mounted a second time.

Device files

The only thing left to do is to create device files. We will need /dev/ram0, because that is where the
root filesystem is located. We also need /dev/fd0 to mount other floppy disks and /dev/null for
use by some of the system commands.

Construction

Install utilities from e2fsprogs
Download the e2fsprogs source code package from http://sourceforge.net/projects/e2fsprogs/

bash# cd /usr/src/e2fsprogs-1.35
bash# export CC="gcc -mcpu=i386"
bash# ./configure --host=i386-pc-linux-gnu
bash# make
bash# cd e2fsck
bash# cp e2fsck.shared ~/staging/sbin/e2fsck
bash# ln -s e2fsck ~/staging/sbin/fsck.ext2
bash# cd ../misc
bash# cp fsck mke2fs ~/staging/sbin
bash# ln -s mke2fs ~/staging/sbin/mkfs.ext2

Install utilities from util-linux
Get the latest util-linux source from ftp://ftp.win.tue.nl/pub/linux-local/utils/util-linux/

http://sourceforge.net/projects/e2fsprogs/
ftp://ftp.win.tue.nl/pub/linux-local/utils/util-linux/

Checking and Mounting Disks

20

bash# cd /usr/src/util-linux-2.12h

Use a text editor to make the following changes to MCONFIG:

• Change "CPU=$(shell uname -m)" to "CPU=i386"

• Change "HAVE_SHADOW=yes" to "HAVE_SHADOW=no"

bash# ./configure
bash# make
bash# cp disk-utils/mkfs ~/staging/sbin
bash# cp fdisk/fdisk ~/staging/sbin
bash# cp login-utils/agetty ~/staging/sbin
bash# ln -s agetty ~/staging/sbin/getty
bash# cp login-utils/login ~/staging/bin
bash# cp misc-utils/kill ~/staging/bin
bash# cp mount/mount ~/staging/bin
bash# cp mount/umount ~/staging/bin
bash# cp mount/swapon ~/staging/sbin
bash# cp sys-utils/dmesg ~/staging/bin

Check library requirements
bash# ldd ~/staging/bin/* | more
bash# ldd ~/staging/sbin/* | more
bash# ls ~/staging/lib

All of the dependencies revealed by the ldd command are for libraries already present in the staging area
so there is no need to copy anything new.

Strip binaries to save space
bash# strip ~/staging/bin/*
bash# strip ~/staging/sbin/*

Create additional device files
bash# mknod ~/staging/dev/ram0 b 1 0
bash# mknod ~/staging/dev/fd0 b 2 0
bash# mknod ~/staging/dev/null c 1 3

Create the fstab and mtab files
bash# cd ~/staging/etc

Use an editor like vi, emacs or pico to create the following file and save it as ~/staging/etc/fstab.

proc /proc proc defaults 0 0
/dev/ram0 / ext2 defaults 1 1

Create an empty mtab file.

bash# echo -n >mtab

Checking and Mounting Disks

21

Write a script to check and mount local filesystems
Use an editor to create the following shell script and save it as ~/staging/etc/init.d/local_fs:

#!/bin/sh
#
local_fs - check and mount local filesystems
#
PATH=/sbin:/bin ; export PATH

fsck -ATCp
if [$? -gt 1]; then
 echo "Filesystem errors still exist! Manual intervention required."
 /bin/sh
else
 echo "Remounting / as read-write."
 mount -n -o remount,rw /
 echo -n >/etc/mtab
 mount -f -o remount,rw /
 echo "Mounting local filesystems."
 mount -a -t nonfs,nosmbfs
fi
#
end of local_fs

Set execute permissions on the script.

bash# chmod +x local_fs

Create a compressed root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase4-image bs=1k count=4096
bash# gzip -9 ~/phase4-image

Write the root disk image to floppy
Insert the diskette labeled "root disk" into drive fd0.

bash# dd if=~/phase4-image.gz of=/dev/fd0 bs=1k

Implementation

System startup
Start the system using the following procedure:

• Boot the PC using the floppy labeled "boot disk".

Checking and Mounting Disks

22

• At the grub> prompt, type the usual kernel and boot commands, but without the rw parameter this
time. In other words, type kernel (fd0)/boot/vmlinuz init=/bin/sh root=/dev/
fd0 load_ramdisk=1 prompt_ramdisk=1, press Enter then type boot and press Enter.

• Put in the recently created root disk when prompted.

The output should resemble the example below:

GNU GRUB version 0.95

grub> kernel (fd0)/boot/vmlinuz init=/bin/sh root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1
 [Linux-bzImage, setup=0xc00, size=0xce29b]

grub> boot

Linux version 2.4.26
..
.. [various kernel messages]
..
VFS: Insert root floppy disk to be loaded into RAM disk and press ENTER
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 178k freed
_

Test the local_fs script
Run the script by typing the following commands at the shell prompt:

bash# PATH=/sbin:/bin:/etc/init.d ; export PATH
bash# cat /etc/mtab
bash# local_fs
bash# cat /etc/mtab
bash# df

If everything is working properly, then the screen output should look something like the example below.

bash# PATH=/sbin:/bin:/etc/init.d ; export PATH
bash# cat /etc/mtab
bash# local_fs
/dev/ram0: clean 74/1024 files 3178/4096 blocks
Remounting / as read-write.
Mounting local filesystems.
bash# cat /etc/mtab
/dev/ram0 / ext2 rw 0 0
proc /proc proc rw 0 0
bash# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ram0 3963 3045 918 77% /

Create and mount additional filesystems
Procure a blank floppy disk and label it as "home". Remove the root disk floppy and insert the "home"
diskette. Type the following commands:

Checking and Mounting Disks

23

bash# mkfs -t ext2 /dev/fd0
bash# fsck /dev/fd0
bash# mount /dev/fd0 /home
bash# mkdir /home/floyd
bash# cd /home/floyd
bash# echo "Goodbye cruel world." > goodbye.txt
bash# cat goodbye.txt

System shutdown
bash# cd /
bash# umount /home

Remove the diskette from fd0 and restart the system using CTRL-ALT-DELETE.

24

Chapter 6. Automating Startup &
Shutdown
Analysis

The root disk from the last chapter is looking pretty good. It has about seventy percent of the commands that
the Filesystem Hierarchy Standard (FHS) document requires for the root filesystem. Plus it has commands
for checking and mounting filesystems. But even with all of this the root disk is far from perfect. The list
below outlines three things that could use some improvement if the Pocket Linux system is to stand up
next to the more professional looking distributions.

1. The system currently requires the kernel parameters to be typed at the grub> prompt in order to start
properly. On any other GNU/Linux system this is only done in an emergency situation when the system
is corrupted.

2. Checking and mounting the root filesystem has to be done manually by running a script at a shell
prompt. On most modern operating systems this function is handled automatically as part of the system
start-up process.

3. Using CTRL-ALT-DELETE for system shutdown is not very graceful. Filesystems should be un-
mounted and cached information should be flushed prior to shutdown. Again, this is something that
most operating systems handle automatically.

Taking the above list into consideration, the goals for this phase are defined as follows:

• Kernel loads without manual intervention.

• Automated system start-up sequence.

• Graceful shutdown capability.

Design

Determining necessary utilities
Loading the kernel without manually typing parameters is easy to do if we read the grub info page. Ac-
cording to the section entitled "configuration" all of the commands used for booting can be put in a file
called menu.lst and placed in the /boot/grub directory.

Note

Be sure to type the menu.lst filename correctly with a lowercase L after the dot and not a
number one.

To automate system start-up we will need an init daemon. We know this because the Bootdisk-HOWTO
and From-Powerup-To-BASH-Prompt-HOWTO both make mention of init as the first program to start
after the kernel loads. The latter HOWTO also goes into some detail about the /etc/inittab file and
the organization of startup scripts. This could be helpful since FHS, the blueprint we have used so far,
makes no recommendation for init scripts.

We will also need to find the shutdown command to fulfill the second goal of graceful shutdown capability.

Automating Startup & Shutdown

25

Obtaining source code
Searching the Linux Software Map on Ibiblio for the keyword "init" gives a large number of results. From
reading the From-Powerup-To-BASH-Prompt-HOWTO however, we know that most Linux systems use
a System V style init daemon. Narrowing the search with the additional key phrase of "System V" gives
much better results. The sysvinit package contains init, shutdown, halt and reboot which is everything
we need. The version listed in the LSM entry looks to be pretty old, but there is a primary-site URL that
will probably lead to the latest version.

Checking dependencies
The manpage for init mentions a FIFO called /dev/initctl that is required for init to communicate
with other programs in the sysvinit package. We will have to create this file for init to function properly.

Designing a simple GRUB configuration file.
Using a GRUB configuration file is slightly more complex than specifying the bootloader commands
manually. There are directives for features like menus, default selections and timeouts that need to be
specified in the configuration file as well as the familiar kernel loading command. The info page for GRUB
gives much of the necessary information. We may also be able to use the GRUB configuration file on the
development system as a template. However, there is some inconsistency between vendors as to the name
and location of the file. Regardless of what the path is on the development system it should be /boot/
grub/menu.lst on the Pocket Linux System.

Outlining start-up scripts
Many of the popular GNU/Linux distributions use System V style init scripts. Since we are using a
"sysvinit" daemon it makes sense to use System V style scripts as well. The following documents all touch
upon the System V style init scripts in some way and will serve as references when building the scripts
for this project:

• The Debian Policy Manual -- available online at http://www.debian.org/doc/debian-policy.

• The Linux Standard Base specification -- downloadable in many formats from http://
www.linuxbase.org/spec/index.shtml.

• Essential System Administration, 3rd Edition by Aeleen Frisch -- available at libraries, bookstores or
directly from O'Reilly Publishing at http://www.oreilly.com/.

After glancing at one or two of the above references we should have a pretty good idea of how the System
V style system initialization process works. We should also know what it takes to create System V style
init scripts for the Pocket Linux project. Below is a brief list of what needs to be done:

• Create an inittab file to call an rc script with a numerical argument giving the runlevel.

• Write an rc script that uses the runlevel argument to execute the appropriate "K" and "S" scripts.

• Modify the previously built local_fs script to take start and stop arguments.

• Create new scripts for shutdown and reboot.

• Set up /etc/rcN.d directories and links to scripts in /etc/init.d.

As always, the BASH(1) manpage and the Advanced BASH Scripting Guide are very helpful for writing
and understanding shell scripts.

http://www.debian.org/doc/debian-policy
http://www.linuxbase.org/spec/index.shtml
http://www.linuxbase.org/spec/index.shtml
http://www.oreilly.com/

Automating Startup & Shutdown

26

Construction
There is a lot of typing to do in this section because of all of the start-up scripts that need to be created.
Using a mouse to copy the text from this guide and paste it into a text editor can be a great time saving tool.

Create a GRUB configuration file
Insert and mount the floppy labeled "boot disk".

bash# mount /dev/fd0 /mnt
bash# cd /mnt/boot/grub

Use your favorite text editor to create the following file and save it as /mnt/boot/grub/menu.lst:

default 0
timeout 3
title Pocket Linux Boot Disk
kernel (fd0)/boot/vmlinuz root=/dev/fd0 load_ramdisk=1 prompt_ramdisk=1

Install sysvinit utilities
Download the latest sysvinit source from ftp://ftp.cistron.nl/pub/people/miquels/software/

bash# cd /usr/src/sysvinit-2.85/src
bash# make CC="gcc -mcpu=i386"
bash# cp halt init shutdown ~/staging/sbin
bash# ln -s halt ~/staging/sbin/reboot
bash# ln -s init ~/staging/sbin/telinit
bash# mknod ~/staging/dev/initctl p

Note

In the interest of speed we are skipping the steps for checking libraries and stripping binaries. The
library requirements for sysvinit are very basic and the Makefile is configured to automatically
strip the binaries.

Create /etc/inittab file
Use a text editor to create the following file and save it as ~/staging/etc/inittab

/etc/inittab - init daemon configuration file
#
Default runlevel
id:1:initdefault:
#
System initialization
si:S:sysinit:/etc/init.d/rc S
#
Runlevel scripts
r0:0:wait:/etc/init.d/rc 0
r1:1:respawn:/bin/sh
r2:2:wait:/etc/init.d/rc 2
r3:3:wait:/etc/init.d/rc 3
r4:4:wait:/etc/init.d/rc 4

ftp://ftp.cistron.nl/pub/people/miquels/software/

Automating Startup & Shutdown

27

r5:5:wait:/etc/init.d/rc 5
r6:6:wait:/etc/init.d/rc 6
#
end of /etc/inittab

Create /etc/init.d/rc script
Use a text editor to create the following file and save it as ~/staging/etc/init.d/rc

#!/bin/sh
#
/etc/init.d/rc - runlevel change script
#
PATH=/sbin:/bin
SCRIPT_DIR="/etc/rc$1.d"
#
Check that the rcN.d directory really exists.
if [-d $SCRIPT_DIR]; then
#
Execute the kill scripts first.
 for SCRIPT in $SCRIPT_DIR/K*; do
 if [-x $SCRIPT]; then
 $SCRIPT stop;
 fi;
 done;
#
Do the Start scripts last.
 for SCRIPT in $SCRIPT_DIR/S*; do
 if [-x $SCRIPT]; then
 $SCRIPT start;
 fi;
 done;
fi
#
end of /etc/init.d/rc

Make the file executable.

bash# chmod +x ~/staging/etc/init.d/rc

Modify /etc/init.d/local_fs script
A case statement is added to allow the script to either mount or unmount local filesystems depending on
the command-line argument given. The original script is contained inside the "start" portion of the case
statement. The "stop" portion is new.

#!/bin/sh
#
local_fs - check and mount local filesystems
#
PATH=/sbin:/bin ; export PATH

case $1 in

Automating Startup & Shutdown

28

start)
 echo "Checking local filesystem integrity."
 fsck -ATCp
 if [$? -gt 1]; then
 echo "Filesystem errors still exist! Manual intervention required."
 /bin/sh
 else
 echo "Remounting / as read-write."
 mount -n -o remount,rw /
 echo -n > /etc/mtab
 mount -f -o remount,rw /
 echo "Mounting local filesystems."
 mount -a -t nonfs,smbfs
 fi
;;

stop)
 echo "Unmounting local filesystems."
 umount -a -r
;;

*)
 echo "usage: $0 start|stop";
;;

esac
#
end of local_fs

Create a hostname script
Use a text editor to create the following script and save it as ~/staging/etc/init.d/hostname

#!/bin/sh
#
hostname - set the system name to the name stored in /etc/hostname
#
PATH=/sbin:/bin ; export PATH

echo "Setting hostname."
if [-f /etc/hostname]; then
 hostname $(cat /etc/hostname)
else
 hostname gnu-linux
fi
#
end of hostname

Create halt & reboot scripts
Use a text editor to create ~/staging/etc/init.d/halt as shown below.

#!/bin/sh
#

Automating Startup & Shutdown

29

halt - halt the system
#
PATH=/sbin:/bin ; export PATH

echo "Initiating system halt."
halt
#
end of /etc/init.d/halt

Create the following script and save it as ~/staging/etc/init.d/reboot

#!/bin/sh
#
reboot - reboot the system
#
PATH=/sbin:/bin ; export PATH

echo "Initiating system reboot."
reboot
#
end of /etc/init.d/reboot

Flag all script files as executable.

bash# chmod +x ~/staging/etc/init.d/*

Create rcN.d directories and links
bash# cd ~/staging/etc
bash# mkdir rc0.d rc1.d rc2.d rc3.d rc4.d rc5.d rc6.d rcS.d
bash# cd ~/staging/etc/rcS.d
bash# ln -s ../init.d/local_fs S20local_fs
bash# ln -s ../init.d/hostname S30hostname
bash# cd ~/staging/etc/rc0.d
bash# ln -s ../init.d/local_fs K10local_fs
bash# ln -s ../init.d/halt K90halt
bash# cd ~/staging/etc/rc6.d
bash# ln -s ../init.d/local_fs K10local_fs
bash# ln -s ../init.d/reboot K90reboot

Create the root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase5-image bs=1k
bash# gzip -9 ~/phase5-image

Copy the image to diskette
Insert the diskette labeled "root disk" into drive fd0.

Automating Startup & Shutdown

30

bash# dd if=~/phase5-image.gz of=/dev/fd0 bs=1k

Implementation

System Startup
Boot the PC using the floppy labeled "boot disk". Place the recently created root disk in fd0 when prompted.
The output should resemble the example below:

GNU GRUB version 0.95

Uncompressing Linux... Ok, booting kernel.
..
.. [various kernel messages]
..
VFS: Insert root floppy to be loaded into RAM disk and press ENTER
RAMDISK: Compressed image found at block 0
VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 178k freed
Checking local filesystem integrity.
/dev/ram0: clean 105/1024 files 2842/4096 blocks
Remounting / as read-write.
Mounting local filesystems.
Setting the hostname.
INIT: Entering runlevel: 1
_

Verify success of startup scripts
Use the mount command to check that local filesystems are mounted as read-write. The output should
look like the example below.

bash# mount
/dev/root on / type ext2 (rw)
proc on /proc type proc (rw)

Check the hostname.

bash# uname -n
gnu-linux

System shutdown
Bring the system down gracefully with the shutdown command.

bash# shutdown -h now

We should see the following output from init and the shutdown scripts:

INIT: Switching to runlevel: 0
INIT: Sending processes the TERM signal
Terminated
INIT: Sending processes the KILL signal

Automating Startup & Shutdown

31

Unmounting local filesystems.
Initiating system halt.
System halted.

32

Chapter 7. Enabling Multiple Users
Analysis

Up to now the system has been operating in single-user mode. There is no login process and anyone who
boots the system goes straight into a shell with root privileges. Obviously, this is not the normal operating
mode for most GNU/Linux distributions. Most systems feature multi-user capability where many users
can access the system simultaneously with different privilege levels. These multi-user systems also sup-
port virtual consoles so that the keyboard and video display can be multiplexed between several terminal
sessions. So in this phase we would like to add the following enhancements to the system:

• Enable multi-user capability.

• Create multiple, virtual consoles.

Design

The login process
The From-Powerup-To-BASH-Prompt-HOWTO does a good job of outlining the steps in the login
process. Basically it works like this.

1. The init daemon starts a getty process on the terminal.

2. The getty program displays the contents of /etc/issue and prompts for a user name.

3. When the user name is entered, control is handed off to the login program.

4. The login program asks for a password and verifies the credentials using /etc/passwd, /etc/
group and possibly /etc/shadow.

5. If everything is okay the user's shell is started.

Obtaining source code
The getty and login programs were already installed as part of the util-linux package so there is no need
to download any new source code.

Creating support files

Device nodes

Details about virtual console device files can be found in the Linux kernel source code file called
devices.txt in the Documentation directory. We will need to create tty1 through tty6 for each
of the virtual consoles as well as tty0 and tty to represent the current virtual console.

/etc/issue

The /etc/issue file is pretty easy to construct. It can contain any text we want displayed on the screen
prior to the login prompt. It could be something friendly like "Welcome to Pocket Linux", something

Enabling Multiple Users

33

menacing like "Authorized users only!" or something informational like "Connected to tty1 at 9600bps".
The agetty(8) manpage explains how to display information like tty line and baud rate using escape codes.

/etc/passwd

The format of /etc/passwd can be obtained by reading the passwd(5) manpage. We can easily create
a user account by adding a line like "root::0:0:superuser:/root:/bin/sh" to the file.

Maintaining passwords will be somewhat challenging because of the system being loaded into ramdisk.
Any changes to /etc/passwd will be lost when the system is shutdown. So to make things easy, we
will create all users with null passwords.

/etc/group

The structure of /etc/group is available from the group(5) manpage. A line of "root::0:root" would
define a group called "root" with no password, a group id of zero and the user root assigned to it as the
only member.

Conventions

User and group names and id's are generally not chosen at random. Most Linux systems have very similar
looking /etc/passwd and /etc/group files. Definitions for commonly used user id and group id
assignments may be found in one of several places:

• The /etc/passwd and /etc/group files on any popular GNU/Linux distribution.

• The Debian Policy Manual -- available online at http://www.debian.org/doc/debian-policy.

• The Linux Standard Base specification -- downloadable in many formats from http://
www.linuxbase.org/spec/index.shtml.

• Essential System Administration, 3rd Edition by Aeleen Frisch -- available at libraries, bookstores or
directly from O'Reilly Publishing at http://www.oreilly.com/.

Dependencies
Running ldd on the login program from util-linux will reveal that it is linked to the libraries
libcrypt.so.1, libc.so.6 and ld-linux.so.2. In addition to these libraries there is another,
unseen dependency on libnss_files.so.2 and the configuration file /etc/nsswitch.conf.

The name service switch library libnss_files.so.2 and nsswitch.conf are required for
libc.so.6, and consequently the login program, to access the /etc/passwd file. Without libnss
and its configuration file, all logins will mysteriously fail. More information about glibc's use of the name
service switch libraries can be found at http://www.gnu.org/software/libc/manual/html_node/Name-Ser-
vice-Switch.html.

Assigning ownership and permissions
Previously, with the single user system, there was no need to worry about permissions when installing di-
rectories, files and device nodes. The shell was effectively operating as root, so everything was accessible.
Things become more complex with the addition of multiple user capability. Now we need to make sure
that every user has access to what they need and at the same time gets blocked from what they do not need.

A good guideline for assigning ownership and permissions would be to give the minimum level of access
required. Take the /bin directory as an example. The Filesystem Hierarchy (FHS) document says, "/bin

http://www.debian.org/doc/debian-policy
http://www.linuxbase.org/spec/index.shtml
http://www.linuxbase.org/spec/index.shtml
http://www.oreilly.com/
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html

Enabling Multiple Users

34

contains commands that may be used by both the system administrator and by users". From that statement
we can infer that /bin should have read and execute permission for everyone. On the other hand, the
/boot directory contains files for the boot loader. Chances are good that regular users will not need to
access anything in the /boot directory. So the minimum level of access would be read permission for
the root user and other administrators who are members of the root group. Normal users would have no
permissions assigned on the /boot directory.

Most of the time we can assign similar permissions to all the commands in a directory, but there are some
programs that prove to be exceptions to the rule. The su command is a good example. Other commands
in the /bin directory have a minimum requirement of read and execute, but the su command needs to be
setuid root in order to run correctly. Since it is a setuid binary, it might not be a good idea to allow just
anyone to run it. Ownership of 0:0 (root user, root group) and permissions of rwsr-x--- (octal 4750) would
be a good fit for su.

The same logic can be applied to other directories and files in the root filesystem using the following steps:

1. Assign ownership to the root user and root group.

2. Set the most restrictive permissions possible.

3. Adjust ownership and permissions on an "as needed" basis.

Construction

Verify presence of getty and login
bash# ls ~/staging/sbin/getty
bash# ls ~/staging/bin/login

Modify inittab for multi-user mode
Modify ~/staging/etc/inittab by changing the default runlevel and adding getty entries as shown
below.

/etc/inittab - init daemon configuration file
#
Default runlevel
id:2:initdefault:
#
System initialization
si:S:sysinit:/etc/init.d/rc S
#
Runlevel scripts
r0:0:wait:/etc/init.d/rc 0
r1:1:respawn:/bin/sh
r2:2:wait:/etc/init.d/rc 2
r3:3:wait:/etc/init.d/rc 3
r4:4:wait:/etc/init.d/rc 4
r5:5:wait:/etc/init.d/rc 5
r6:6:wait:/etc/init.d/rc 6
#
Spawn virtual terminals
1:235:respawn:/sbin/getty 38400 tty1 linux

Enabling Multiple Users

35

2:235:respawn:/sbin/getty 38400 tty2 linux
3:235:respawn:/sbin/getty 38400 tty3 linux
4:235:respawn:/sbin/getty 38400 tty4 linux
5:235:respawn:/sbin/getty 38400 tty5 linux
6:2345:respawn:/sbin/getty 38400 tty6 linux
#
end of /etc/inittab

Create tty devices
bash# cd ~/staging/dev
bash# mknod ~/staging/dev/tty0 c 4 0
bash# mknod ~/staging/dev/tty1 c 4 1
bash# mknod ~/staging/dev/tty2 c 4 2
bash# mknod ~/staging/dev/tty3 c 4 3
bash# mknod ~/staging/dev/tty4 c 4 4
bash# mknod ~/staging/dev/tty5 c 4 5
bash# mknod ~/staging/dev/tty6 c 4 6
bash# mknod ~/staging/dev/tty c 5 0

Create support files in /etc

/etc/issue

Create the file ~/staging/etc/issue using the example below or design a customized message.

Connected to \l at \b bps.

Be sure that "\l" is a lowercase letter L and not the number one.

/etc/passwd

Use a text editor to create a minimal passwd file conforming to the Linux Standards Base (LSB) document.
Save the file as ~/staging/etc/passwd

root::0:0:Super User:/root:/bin/sh
bin:x:1:1:Legacy UID:/bin:/bin/false
daemon:x:2:2:Legacy UID:/sbin:/bin/false

/etc/group

Use a text editor to create an LSB conforming group file and save it as ~/staging/etc/group

root::0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon

/etc/nsswitch.conf

Create the following file and save it as ~/staging/etc/nsswitch.conf

passwd: files
group: files

Enabling Multiple Users

36

Copy required libraries
bash# cp /lib/libnss_files.so.2 ~/staging/lib
bash# strip --strip-unneeded ~/staging/lib/*

Set directory and file permissions
Set minimal privileges on all files and directories under ~/staging. Everything is owned by the root
user and the root group. Permissions are read-write for the owner and read-only for the group. Exceptions
to the blanket permissions are handled case by case.

bash# cd ~/staging
bash# chown -R 0:0 ~/staging/*
bash# chmod -R 640 ~/staging/*

Set execute permission on all directories. (Note the capital "X")

bash# chmod -R +X ~/staging/*

Files in /bin are read and execute for all, but su is an exception.

bash# chmod 755 ~/staging/bin/*
bash# chmod 4750 ~/staging/bin/su

Files in /dev have various permissions. Disk devices should be accessible to administrators only. Other
files like /dev/null should have full privileges granted to everyone.

bash# chmod 660 ~/staging/dev/fd0 dev/ram0
bash# chmod 666 ~/staging/dev/null
bash# chmod 622 ~/staging/dev/console
bash# chmod 600 ~/staging/dev/initctl
bash# chmod 622 ~/staging/dev/tty
bash# chmod 622 ~/staging/dev/tty?

The passwd and group files must be world readable.

bash# chmod 644 ~/staging/etc/passwd
bash# chmod 644 ~/staging/etc/group

The scripts in /etc/init.d are read and execute for administrators.

bash# chmod 750 ~/staging/etc/init.d/*

Libraries need read and execute permissions for everyone.

bash# chmod 755 ~/staging/lib/*

Only root should have access to the /root directory.

bash# chmod 700 ~/staging/root

Make files in /sbin read and execute for administrators.

bash# chmod 750 ~/staging/sbin/*

Temp should be read-write for all with the sticky bit set.

Enabling Multiple Users

37

bash# chmod 1777 ~/staging/tmp

Create the root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase6-image bs=1k count=4096
bash# gzip -9 ~/phase6-image

Copy the image to diskette
Insert the diskette labeled "root disk" into drive fd0.

bash# dd if=~/phase6-image.gz of=/dev/fd0 bs=1k

Implementation

System Startup
If everything goes well, the virtual console display should look similar to the following example:

Connected to tty1 at 38400 bps.
gnu-linux login:

Add a new user to the system
Log in as root.

Create a new, unprivileged user and new group by appending a line to the /etc/passwd and /etc/
group files, respectively. Be sure to use a double greater-than (>>) to avoid accidentally overwriting
the files.

bash# echo "floyd::501:500:User:/home/floyd:/bin/sh" >>/etc/passwd
bash# echo "users::500:" >>/etc/group
bash# mkdir /home/floyd
bash# chown floyd.users /home/floyd
bash# chmod 700 /home/floyd

Test the new user's ability to use the system
Switch to virtual terminal tty2 by pressing ALT+F2.

Log in as floyd.

Try the following commands and verify that they work.

bash$ pwd
bash$ ls -l /

Enabling Multiple Users

38

bash$ cat /etc/passwd

Try the following commands and verify that they do not work.

bash$ ls /root
bash$ /sbin/shutdown -h now
bash$ su -

System shutdown
Switch back to tty1 where root is logged in.

bash# shutdown -h now

39

Chapter 8. Filling in the Gaps
Analysis

The root disk has come a long way since its humble beginnings as a statically-linked shell. It now shares
many features with the popular, ready-made distributions. For example it has:

• Several common utilities like cat, ls and so on.

• Startup scripts that automatically check and mount filesystems.

• Graceful shutdown capability.

• Support for multiple users and virtual terminals.

As a final test, we can put the root disk up against the Filesystem Hierarchy Standard (FHS) requirements
for the root filesystem. (We will ignore anything in the /usr hierarchy because of space constraints.)
Compared to FHS requirement, the only files missing are a few commands in the /bin directory. Specif-
ically, the root disk lacks the following commands:

• more

• ps

• sed

In addition to the required commands, it might be nice to include the "ed" editor listed as an option by the
FHS. It is not as robust as vi or emacs, but it works and it should fit onto the tiny root filesystem.

So in order to finish up this phase of the project, we need to accomplish the following goals:

• Add the more, ps and sed commands.

• Install the optional ed editor.

Design

more
There is a more command that comes with util-linux, but it will not work for this project. The reason
is because of library dependencies and space constraints. The util-linux supplied more needs either the
libncurses or libtermcap to work and there just is not enough space on the root disk floppy to fit everything
in. So, in order to have a more command we will have to get creative.

The more command is used to display a file page by page. It's a little like having a cat command that
pauses every twenty-five lines. The basic logic is outlined below.

• Read one line of the file.

• Display the line on the screen.

• If 25 lines have been displayed, pause.

• Loop and do it again.

Filling in the Gaps

40

Of course there are some details left out like what to do if the screen dimensions are not what we anticipated,
but overall it is a fair representation of what more does. Given this simple program logic, it should not
be hard to put together a short shell script that emulates the basic functionality of more. The BASH(1)
manpage and Adv-BASH-Scripting-Guide will serve as references.

More device files
The more script will need access to device files that are not on the root disk yet. Specifically more needs
to have stdin, stdout and stderr, but while we are at it we should check for any other missing /
dev files. The Linux Standard Base requires null, zero and tty to be present in the /dev directory.
Files for null and tty already exist from previous phases of the project, but we still need /dev/zero.
We can refer to devices.txt in the Linux source code Documentation directory for major and
minor numbers.

ps, sed & ed
These three packages can be found by using the Internet resources we have used before plus one new site.
The "sed" and "ed" packages can be found at the same place we found BASH, on the GNU FTP server
[ftp://ftp.gnu.org]. The procps package shows up in an Ibiblio LSM search, but it is an old version. In
order to find the latest version we can go to the Freshmeat website at http://freshmeat.net and search for
"procps" in projects.

Both "sed" and "ed" packages feature GNU's familiar configure script and are therefore very easy to build.
There is no configure script for "procps" but this does not make things too difficult. We can just read the
package's README file to find out about how to set various configuration options. We can use one of these
options to avoid the complexity of using and installing libproc. Setting SHARED=0 makes libproc an
integrated part of ps rather than a separate, shared library.

Construction

Write a "more" script
Create the following script with a text editor and save it as ~/staging/bin/more.sh

#!/bin/sh
#
more.sh - emulates the basic functions of the "more" binary without
requiring ncurses or termcap libraries.
#
Assume input is coming from STDIN unless a valid file is given as
a command-line argument.
if [-f $1]; then
 INPUT="$1"
else
 INPUT="/dev/stdin"
fi
#
Set IFS to newline only. See BASH(1) manpage for details on IFS.
IFS=$'\n'
#
If terminal dimensions are not already set as shell variables, take
a guess of 80x25.

ftp://ftp.gnu.org
ftp://ftp.gnu.org
http://freshmeat.net

Filling in the Gaps

41

if ["$COLUMNS" = ""]; then
 let COLUMNS=80;
fi
if ["$LINES" = ""]; then
 let LINES=25;
fi
#
Initialize line counter variable
let LINE_COUNTER=$LINES
#
Read the input file one line at a time and display on STDOUT until
the page fills up. Display "Press <Enter>" message on STDERR and wait
for keypress from STDERR. Continue until the end of the input file.
Any input line greater than $COLUMNS characters in length is wrapped
and counts as multiple lines.
#
while read -n $COLUMNS LINE_BUFFER; do
 echo "$LINE_BUFFER"
 let LINE_COUNTER=$LINE_COUNTER-1
 if [$LINE_COUNTER -le 1]; then
 echo "Press <ENTER> for next page or <CTRL>+C to quit.">/dev/stderr
 read</dev/stderr
 let LINE_COUNTER=$LINES
 fi
done<$INPUT
#
end of more.sh

Create a symbolic link for more

bash# ln -s more.sh ~/staging/bin/more

Create additional device files
bash# ln -s /proc/self/fd ~/staging/dev/fd
bash# ln -s fd/0 ~/staging/dev/stdin
bash# ln -s fd/1 ~/staging/dev/stdout
bash# ln -s fd/2 ~/staging/dev/stderr
bash# mknod -m644 ~/staging/dev/zero c 1 5

Install ps
Get the latest procps source package from http://procps.sourceforge.net/

bash# cd /usr/src/procps-3.2.3
bash# make SHARED=0 CC="gcc -mcpu=i386"
bash# cd ps
bash# cp ps ~/staging/bin

Install sed
Download GNU's sed from ftp://ftp.gnu.org/gnu/sed/

bash# cd /usr/src/sed-4.1.2

http://procps.sourceforge.net/
ftp://ftp.gnu.org/gnu/sed/

Filling in the Gaps

42

bash# export CC="gcc -mcpu=i386"
bash# ./configure --host=i386-pc-linux-gnu
bash# make
bash# cd sed
bash# cp sed ~/staging/bin

Install ed
The ed package also comes from GNU at ftp://ftp.gnu.org/gnu/ed/

bash# cd /usr/src/ed-0.2
bash# ./configure --host=i386-pc-linux-gnu
bash# make
bash# cp ed ~/staging/bin

Strip binaries to save space
bash# strip ~/staging/bin/*

Ensure proper permissions
bash# chown 0:0 ~/staging/bin/*
bash# chmod -R 755 ~/staging/bin
bash# chmod 4750 ~/staging/bin/su

Create the root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7 4096
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase7-image bs=1k
bash# gzip -9 ~/phase7-image

Copy the image to diskette
Insert the diskette labeled "root disk" into drive fd0.

bash# dd if=~/phase7-image.gz of=/dev/fd0 bs=1k

Implementation

System startup
Boot from the diskset in the usual way and log in as root.

Test the "more" script
Display kernel messages by piping the output of dmesg to more.

ftp://ftp.gnu.org/gnu/ed/

Filling in the Gaps

43

bash# dmesg | more

Examine the local_fs script by using more with a command-line argument.

bash# more /etc/init.d/local_fs

Use ps to show running processes
Display processes for the user currently logged in.

bash# ps

Display all available information about all running processes.

bash# ps -ef

Run a simple sed script
Use sed to display an alternate version of /etc/passwd.

bash# sed -e "s/Legacy/Old School/" /etc/passwd

Verify that sed did not make the changes permanent.

bash# cat /etc/passwd

Test the "ed" editor
Use ed to change properties on the "daemon" user.

bash# ed -p*
ed* r /etc/passwd
ed* %p
ed* /daemon/s/Legacy/Old School/
ed* %p
ed* w
ed* q

Verify that the changes are permanent (at least until the system is restarted.)

bash# cat /etc/passwd

System shutdown
Bring the system down gracefully with the shutdown command.

44

Chapter 9. Project Wrap Up
Celebrating Accomplishments

As the Pocket Linux Project draws to a close we should take a moment to celebrate all of our accomplish-
ments. Some of the highlights are listed below:

• We have built a system, from source code only, that fully implements all of the commands described in
the Filesystem Hierarchy Standard requirements for a root filesystem.

• We have learned how to use Internet resources to locate and download the source code needed to build
a GNU/Linux system.

• We have written basic system startup and shutdown scripts and configured them to execute in the proper
runlevels.

• We have included support for multiple users on virtual consoles and implemented permissions on system
files.

• But most importantly, we have learned some good design techniques and project management skills
that will enable us to tackle any future projects with ease and confidence.

Planning Next Steps
The Pocket Linux system is nearly overflowing, so there really is no more room to expand the current
root diskette to support any additional commands and features. This leaves us with a few choices of where
to go next. We can:

• Find a way to expand the current system just enough to host a small application. (For more information
about hosting applications with Pocket Linux, see Appendix A)

• Remove multi-user capability and some of the less often used commands from the root disk, replacing
them with utilities like tar and gzip that would be useful for a rescue/restore diskset.

• Use the techniques we have learned to design and build an entire GNU/Linux system and install it on a
more spacious hard disk partition. (For more infomation about building a larger system, check out the
GNU/Linux System Architect Toolkit at: http://architect.sourceforge.net/.)

Which ever path is chosen, we can move forward confidently, armed with the knowledge we need to be
successful in our endeavors.

http://architect.sourceforge.net/

45

Appendix A. Hosting Applications
Analysis

An operating system by itself is not much fun. What makes an OS great is the applications that can be
run on top of it. Unfortunately, Pocket Linux currently does not have much room for anything other than
system programs. Still, it would be nice to expand the system just enough to host some cool applications.
Obviously a full-blown X-Windows GUI is out of the question, but running a small console based program
should be within our reach.

Rather than doing a typical "hello world" program as an example, application hosting will be demonstrated
using a console based audio player called mp3blaster. Building mp3blaster offers more technical challenge
than "hello world" and the finished product should be a lot more fun. However, it should not be construed
that a console-based jukebox is the only application for Pocket Linux. On the contrary, after completing
this phase the reader should have the knowledge and tools to build almost any console-based program he
or she desires.

So what will it take to turn a pocket-sized GNU/Linux system into a pocket-sized mp3 player? A few
things are listed below.

• Add support for audio hardware.

• Create space for the mp3blaster program.

• Provide a convenient way to access audio files.

Design
Support for audio hardware

There is a vast proliferation of audio hardware on the market and each sound card has its own particular
configuration. For details on how to set up a particular sound card we can turn to the Sound-HOWTO
available from The Linux Documentation Project [http://www.tldp.org]. In a broader sense, however, we
can treat a sound card like any other piece of new hardware. To add new hardware to a GNU/Linux system
we will need configure the kernel to recognize it and configure /dev files on the root disk to access it.

Kernel support for audio

In order to support sound cards, a new kernel will have to be built. It is very important that audio hardware
support be configured as built-in, because Pocket Linux is not set up to handle kernel modules.

Root disk support for audio

Searching devices.txt for the keyword "sound" will list quite a few possible audio devices, but usually
only /dev/dsp and /dev/mixer are required to get sound from a PC. These two files control the
digital audio output and mixer controls, respectively.

Creating space for the program
Probably the easiest way to create more space for the mp3blaster program is to mount an additional storage
device. There are several choices for mount points. So far /usr, /home and /opt are all empty direc-
tories and any one of them could be used to mount a floppy, CD-ROM or additional compressed ramdisk
image. The /usr directory is a logical choice for a place to put an application, but what about the choice

http://www.tldp.org
http://www.tldp.org

Hosting Applications

46

of media? Mp3blaster and its required libraries are too big to fit on a 1.44M floppy and burning a CD-
ROM seems like a lot of work for one little program. So given these constraints, the best choice would
be to put the program on a compressed floppy.

Mounting additional compressed floppies

Mounting CDs and uncompressed diskettes is easy, but what about loading compressed images from floppy
into ramdisk? It will have to be done manually, because automatic mounting of compressed floppies only
works for the root diskette. And using mount /dev/fd0 will not work because there is no filesystem on the
diskette, there are only the contents of a gzip file. The actual filesystem is contained inside the gzip file.
So how can we mount the filesystem buried beneath the gzip file? This puzzle can be solved by examining
at the steps used to create the familiar compressed root disk floppy.

1. A ramdisk is created, mounted and filled with files.

2. The ramdisk device is unmounted.

3. The contents of the ramdisk are dumped to an image file using dd.

4. The image file is compressed with gzip.

5. The compressed image file is written to floppy with dd.

If that is how the compressed image makes its way from ramdisk to compressed floppy, then going from
compressed floppy to ramdisk should be as simple as running through the steps in reverse.

1. The compressed image file is read from floppy with dd.

2. The image file is uncompressed with gunzip.

3. The contents of the image file are dumped into ramdisk using dd.

4. The ramdisk device is mounted.

5. The files are available.

We can cut out the intermediate image file by using a pipe to combine dd and gunzip like this: dd if=/
dev/fd0 | gunzip -cq > /dev/ram1. Now the compressed floppy goes straight into ramdisk, decompressing
on the fly.

Root disk support for additional ramdisks

We already have kernel support for ramdisks, because we are using a compressed root disk, but we will
need to create more ramdisks in /dev. Typically the kernel supports eight ramdisks on /dev/ram0
through /dev/ram7 with ram0 being used for the rootdisk. The devices.txt file included in the
Linux source code documentation will be helpful for matching devices to their major and minor numbers.

Accessing audio files
The sample mp3 file that we will be using in our example is small enough to fit on an uncompressed floppy
disk so that there is no need to burn a CD. However, serious music lovers may want to have the capability
to mount a custom CD-ROM full of tunes and that option will require support for additional hardware.

CD-ROM hardware support

Most modern CD-ROM drives will use IDE devices like /dev/hdc or /dev/hdd. To support these
CD-ROM drives we will have to configure IDE support in the kernel and create the appropriate device
files on the root disk.

Hosting Applications

47

CD-ROM filesystem support

CD-ROMs have different filesystems than hard disks and floppies. Most CD burning applications use a
filesystem called ISO-9660 and have the capability to support Joliet or Rockridge extensions. We will
have to include support for these filesystems in the kernel in order to mount CD-ROMs.

Other required files
We will want to have all of mp3blaster's required libraries and other supporting files available as part of
the compressed /usr image so that mp3blaster can run correctly. The familiar ldd command can be used
to determine which libraries mp3blaster requires. Any additional libraries can be placed in /usr/lib.
Even though some of the libraries may appear in /lib on the development system, they can still go in
/usr/lib on the Pocket Linux system. The dynamic linker, ld-linux.so, is smart enough to look
in both places when loading libraries.

Because mp3blaster uses the curses (or ncurses) screen control library there is one additional file we need.
The curses library needs to know the characteristics of the terminal it is controlling and it gets that informa-
tion from the terminfo database. The terminfo database consists of all the files under the /usr/share/
terminfo directory and is very large compared to our available disk space. But, since Pocket Linux only
supports the PC console, we only have one terminal type to worry about and therefore need only one file.
The piece of the terminfo database we need is the file /usr/share/terminfo/l/linux, because
we are using a "Linux" terminal. For more information about the subject of curses, see John Strang's book
entitled "Programming with Curses" available from O'Reilly publishing [http://www.oreilly.com].

Summary of tasks
Between sound cards, ramdisks, CD-ROMs and terminfo there is quite a bit to keep track of. So let's take
a moment to organize and summarize the tasks necessary to make the pocket jukebox a reality.

• Create a new kernel disk that includes built-in support for audio hardware, IDE devices and CD-ROM
filesystems.

• Create the appropriate /dev files on the root disk to support audio hardware, additional ramdisks and
IDE CD-ROMs.

• Install the gunzip utility to enable decompression of the usr image.

• Create a startup script to load a compressed image from floppy into a ramdisk and mount the ramdisk
on /usr.

• Create a compressed floppy that holds the mp3blaster program, its required libraries and terminfo files.

Construction

Create an enhanced boot disk

Build a new kernel

bash# cd /usr/src/linux
bash# make menuconfig

Be sure to configure support for the following:

http://www.oreilly.com
http://www.oreilly.com

Hosting Applications

48

• 386 processor

• Floppy disk

• RAM disk

• Second extended (ext2) filesystem

• Virtual console

• Audio hardware

• CD-ROM hardware

• ISO-9660 and Joliet filesystems

bash# make dep
bash# make clean
bash# make bzImage

Copy the kernel to diskette

Place the boot disk in drive fd0

bash# mount /dev/fd0 /mnt
bash# cp /usr/src/linux/arch/i386/boot/bzImage /mnt/boot/vmlinuz

Unmount the boot disk

bash# cd /
bash# umount /mnt

Create an enhanced root disk

Create additional device files

IDE CD-ROM

bash# mknod -m640 ~/staging/dev/hdc b 22 0
bash# mknod -m640 ~/staging/dev/hdd b 22 64

Optionally create additional IDE devices.

Ramdisk

bash# mknod -m 640 ~/staging/dev/ram1 b 1 1
bash# mknod -m 640 ~/staging/dev/ram2 b 1 2
bash# mknod -m 640 ~/staging/dev/ram3 b 1 3
bash# mknod -m 640 ~/staging/dev/ram4 b 1 4
bash# mknod -m 640 ~/staging/dev/ram5 b 1 5
bash# mknod -m 640 ~/staging/dev/ram6 b 1 6
bash# mknod -m 640 ~/staging/dev/ram7 b 1 7

Audio

bash# mknod -m664 ~/staging/dev/dsp c 14 3

Hosting Applications

49

bash# mknod -m664 ~/staging/dev/mixer c 14 0

Install the gunzip binary

bash# cd /usr/src/gzip-1.2.4a
bash# export CC="gcc -mcpu=i386"
bash# ./configure --host=i386-pc-linux-gnu
bash# make
bash# strip gzip
bash# cp gzip ~/staging/bin
bash# ln -s gzip ~/staging/bin/gunzip

Don't forget to verify library requirements, check the ownership and check permissions on the gzip binary.

Write a startup script to mount a compressed floppy

Use a text editor to create the following script and save it as ~/staging/etc/init.d/usr_image

#!/bin/sh
#
usr_image - load compressed images from floppy into ramdisk and
mount on /usr.
#
echo -n "Is there a compressed diskette to load for /usr [y/N]? "
read REPLY
if ["$REPLY" = "y"] || ["$REPLY" = "Y"]; then
 echo -n "Please insert the /usr floppy into fd0 and press <ENTER>."
 read REPLY
 echo "Clearing /dev/ram1."
 dd if=/dev/zero of=/dev/ram1 bs=1k count=4096
 echo "Loading compressed image from /dev/fd0 into /dev/ram1..."
 (dd if=/dev/fd0 bs=1k | gunzip -cq) >/dev/ram1 2>/dev/null
 fsck -fp /dev/ram1
 if [$? -gt 1]; then
 echo "Filesystem errors on /dev/ram1! Manual intervention required."
 else
 echo "Mounting /usr."
 mount /dev/ram1 /usr
 fi
fi
#
end of usr_image

Configure the script to run right after root is mounted.

bash# ln -s ../init.d/usr_image ~/staging/etc/rcS.d/S21usr_image

Create a compressed root disk

bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7
bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/staging/* /mnt

Hosting Applications

50

bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/phase8-image bs=1k
bash# gzip -9 ~/phase8-image

Insert the diskette labeled "root disk" into drive fd0.

bash# dd if=~/phase8-image.gz of=/dev/fd0 bs=1k

Create a compressed /usr disk for mp3blaster
The compressed /usr diskette will be created in using the same process that is used to create the compressed
root disk. We will copy files to a staging area, copy the staging area to ramdisk, compress the ramdisk
and write it to diskette.

Create a staging area

bash# mkdir ~/usr-staging
bash# cd ~/usr-staging
bash# mkdir bin lib
bash# mkdir -p share/terminfo/l

Install the mp3blaster program

Download the latest version of mp3blaster source code from its home at http://www.stack.nl/~bra-
ma/mp3blaster/.

bash# cd ~/usr/src/mp3blaster-3.2.0
bash# ./configure
bash# make
bash# cp src/mp3blaster ~/usr-staging/bin

Copy additional libraries and terminfo

Use ldd to find out which libraries are needed for mp3blaster.

Note

The following is an example from the author's development system. It is possible that different
systems may yield slightly different results in terms of library requirements.

bash# cd ~/usr-staging/lib
bash# ldd ~/usr-staging/bin/mp3blaster
bash# cp /usr/lib/ncurses.so.5.0 .
bash# cp /usr/lib/stdc++.so.3 .
bash# cp /lib/libm.so.6 .
bash# cp /usr/lib/libgcc_s.so.1 .
bash# cd ~/usr-staging/share/terminfo/l
bash# cp /usr/share/terminfo/l/linux .

Make a compressed image and copy it to diskette

bash# cd /
bash# dd if=/dev/zero of=/dev/ram7 bs=1k count=4096
bash# mke2fs -m0 /dev/ram7

http://www.stack.nl/~brama/mp3blaster/
http://www.stack.nl/~brama/mp3blaster/

Hosting Applications

51

bash# mount /dev/ram7 /mnt
bash# cp -dpR ~/usr-staging/* /mnt
bash# umount /dev/ram7
bash# dd if=/dev/ram7 of=~/mp3blaster-image bs=1k
bash# gzip -9 ~/mp3blaster-image

Insert the diskette labeled "mp3blaster" into drive fd0.

bash# dd if=~/mp3blaster-image.gz of=/dev/fd0 bs=1k

Create a data diskette for testing
Go to the Internet site http://www.paul.sladen.org and download the mp3 file of Linus Torvalds pronounc-
ing "Linux." The direct link is: http://www.paul.sladen.org/pronunciation/torvalds-says-linux.mp3. Create
a Second Extended (ext2) filesystem on a floppy and copy the mp3 file onto the diskette.

Implementation

System Startup
1. Boot from the kernel diskette.

2. Insert the root floppy when prompted.

3. When prompted for a /usr diskette, say 'Y'.

4. Insert the mp3blaster diskette and press Enter.

Verify that the /usr diskette loaded properly
bash# mount
bash# ls -lR /usr

Check the audio device initialization
bash# dmesg | more

If everything worked there should be a line or two indicating that the kernel found the audio hardware.
The example below shows how the kernel might report a Yamaha integrated sound system.

ymfpci: YMF740C at 0xf4000000 IRQ 10
ac97_codec: AC97 Audio codec, id: 0x4144:0x5303 (Analog Devices AD1819)

Test audio output
bash# echo "Garbage" > /dev/dsp

A short burst of static coming from the PC speakers indicates that sound is working.

Play a sample file
Insert the diskette containing the sample audio file.

http://www.paul.sladen.org
http://www.paul.sladen.org/pronunciation/torvalds-says-linux.mp3

Hosting Applications

52

mount /dev/fd0 /home
bash# /usr/bin/mp3blaster

Use mp3blaster to select and play the file /home/torvalds-says-linux.mp3. Use mp3blaster's
mixer controls to adjust the volume as needed.

System shutdown
Bring the system down gracefully with the shutdown command.

53

Appendix B. GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verba-
tim copies of this license document, but changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

GNU Free Documentation License

54

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edit-
ed only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the

GNU Free Documentation License

55

publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the mod-
ifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

GNU Free Documentation License

56

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/
or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Ver-
sion.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms de-
fined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but dif-
ferent contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

GNU Free Documentation License

57

COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation's users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

GNU Free Documentation License

58

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

	Pocket Linux Guide
	Table of Contents
	Legal Information
	Copyright and License
	Disclaimer

	Introduction
	About Pocket Linux
	Prerequisite Skills
	Project Format
	Help & Support
	Feedback

	Chapter 1. Project Initiation
	A Brief History of GNU/Linux
	The Goal of Pocket Linux
	Working Within The Constraints

	Chapter 2. A Simple Prototype
	Analysis
	Design
	Simplification
	Boot Disk
	Root Disk
	CPU Compatibility

	Construction
	Prepare the boot disk media
	Build the GRUB bootloader
	Copy the bootloader files to diskette
	Finish bootloader installation
	Build the Linux kernel
	Copy the kernel to diskette
	Unmount the boot disk
	Prepare the root disk media
	Build BASH
	Copy BASH to the root disk
	Create device files that BASH needs
	Unmount the root disk

	Implementation
	System startup
	Testing what works
	Noting what does not work
	System shutdown

	Chapter 3. Saving Space
	Analysis
	Design
	Shared Libraries
	Stripped Binaries
	Compressed Root Filesystem

	Construction
	Create a ramdisk
	Rebuild the BASH shell
	Determine which libraries are required
	Copy BASH and its libraries to the ramdisk
	Create a console device
	Compress the ramdisk image
	Copy the compressed image to diskette

	Implementation
	System startup
	Verify results
	System shutdown

	Chapter 4. Some Basic Utilities
	Analysis
	Design
	Determining Required Commands
	Locating Source Code
	Leveraging FHS
	Downloading Source Code

	Construction
	Create a staging area
	Copy contents of phase 2 rootdisk
	Install binaries from GNU coreutils
	Copy additional libraries
	Strip binaries and libraries
	Create a compressed root disk image
	Write the root disk image to floppy

	Implementation
	System startup
	Testing new commands
	System shutdown

	Chapter 5. Checking and Mounting Disks
	Analysis
	Design
	Determining necessary utilities.
	Finding source code
	Automating fsck and mount
	File dependencies
	/etc/fstab
	/etc/mtab
	Device files

	Construction
	Install utilities from e2fsprogs
	Install utilities from util-linux
	Check library requirements
	Strip binaries to save space
	Create additional device files
	Create the fstab and mtab files
	Write a script to check and mount local filesystems
	Create a compressed root disk image
	Write the root disk image to floppy

	Implementation
	System startup
	Test the local_fs script
	Create and mount additional filesystems
	System shutdown

	Chapter 6. Automating Startup & Shutdown
	Analysis
	Design
	Determining necessary utilities
	Obtaining source code
	Checking dependencies
	Designing a simple GRUB configuration file.
	Outlining start-up scripts

	Construction
	Create a GRUB configuration file
	Install sysvinit utilities
	Create /etc/inittab file
	Create /etc/init.d/rc script
	Modify /etc/init.d/local_fs script
	Create a hostname script
	Create halt & reboot scripts
	Create rcN.d directories and links
	Create the root disk image
	Copy the image to diskette

	Implementation
	System Startup
	Verify success of startup scripts
	System shutdown

	Chapter 7. Enabling Multiple Users
	Analysis
	Design
	The login process
	Obtaining source code
	Creating support files
	Device nodes
	/etc/issue
	/etc/passwd
	/etc/group
	Conventions

	Dependencies
	Assigning ownership and permissions

	Construction
	Verify presence of getty and login
	Modify inittab for multi-user mode
	Create tty devices
	Create support files in /etc
	/etc/issue
	/etc/passwd
	/etc/group
	/etc/nsswitch.conf

	Copy required libraries
	Set directory and file permissions
	Create the root disk image
	Copy the image to diskette

	Implementation
	System Startup
	Add a new user to the system
	Test the new user's ability to use the system
	System shutdown

	Chapter 8. Filling in the Gaps
	Analysis
	Design
	more
	More device files
	ps, sed & ed

	Construction
	Write a "more" script
	Create additional device files
	Install ps
	Install sed
	Install ed
	Strip binaries to save space
	Ensure proper permissions
	Create the root disk image
	Copy the image to diskette

	Implementation
	System startup
	Test the "more" script
	Use ps to show running processes
	Run a simple sed script
	Test the "ed" editor
	System shutdown

	Chapter 9. Project Wrap Up
	Celebrating Accomplishments
	Planning Next Steps

	Appendix A. Hosting Applications
	Analysis
	Design
	Support for audio hardware
	Kernel support for audio
	Root disk support for audio

	Creating space for the program
	Mounting additional compressed floppies
	Root disk support for additional ramdisks

	Accessing audio files
	CD-ROM hardware support
	CD-ROM filesystem support

	Other required files
	Summary of tasks

	Construction
	Create an enhanced boot disk
	Build a new kernel
	Copy the kernel to diskette
	Unmount the boot disk

	Create an enhanced root disk
	Create additional device files
	IDE CD-ROM
	Ramdisk
	Audio

	Install the gunzip binary
	Write a startup script to mount a compressed floppy
	Create a compressed root disk

	Create a compressed /usr disk for mp3blaster
	Create a staging area
	Install the mp3blaster program
	Copy additional libraries and terminfo
	Make a compressed image and copy it to diskette

	Create a data diskette for testing

	Implementation
	System Startup
	Verify that the /usr diskette loaded properly
	Check the audio device initialization
	Test audio output
	Play a sample file
	System shutdown

	Appendix B. GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

