Pocket Linux Guide

David Horton

Pocket Linux Guide
David Horton

Abstract

The Pocket Linux Guide is for anyone interested in learning the techniques of building a GNU/Linux system from
source code. The guide is structured as a project that builds a small diskette-based GNU/Linux system called Pocket
Linux. Each chapter explores a small piece of the overall system explaining how it works, why it is needed and how
to build it. After completing the Pocket Linux project, readers should possess an enhanced knowledge of what makes
GNU/Linux systemswork as well as the confidence to explore larger, more complex source-code-only projects.

Table of Contents

Legal INFOMMIBIION .. .eeie ettt ettt e et e e e et e e e aaa s Vii
CopYright N LICENSE ... iieieee ettt ettt e e e e e e Vii
(D1 o F= 1111 ST PP P PSPPI Vii

Fg11geTo (¥ oi (oo H PSPPSR PPPRTRN viii
ADOUL POCKEL LINUX ...ttt et e e e e e e e eeaens viii
PrereqUISItE SKIlISo viii
PrOJECE FOIMEL ...ttt ettt ettt et et e e e e eeeans viii
HEIP & SUPPOIT ..ottt e e e Viii
FEEADBCK ...t iX

L. ProJECE INITIAION ...ttt ettt e et e e et e et et eeeaa s 1
A Brief History of GNU/LINUXoieiiiiiiiiii et e e 1
The Goal Of POCKEL LINUXceeeieieieiii ettt ettt e e e e e e e 1
Working Within The CONSIIaiNESccoeuiiiiiiiii e 1

2. A SIMPIE PrOtOLYPE ..ttt ettt 3
AANBIYSIS e 3
(D= o | PP PPT R TPPPPT 3

SIMPITICAITION ..t e e e e 3
BOOL DISK ..ttt ettt ettt ettt et 3
ROOE DISK .ttt ettt et e e e et et e e e e 4
CPU CompatiDilitycouuieieii et 4
CONSITUCTION ...ttt ettt ettt ettt e e et et e e et et e e et et e e et et e e e e aba s 4
Prepare the oot disk Mediauiiiiiiii e 4
Build the GRUB DOOHOAOEScooiiiieiiiii e 4
Copy the bootloader files to diSKEIEuuiiiiiiii e 4
Finish bootloader iNStallationoooeiuiiiiiii e 5
Build the LinuX KEIMEL ... 5
Copy the Kernel 10 disketteiiiiii e 6
UNmOUNt the DOOE iSKieeiiieieie et 6
Prepare the root disk Media..........ooooiiiiiiii e 6
BUITA BASH .o et 6
Copy BASH 10 the 100t diSKcccevuiiiiiiiie e 6
Create device filesthat BASH NEEASuiiiiiiiiieii e 6
UNMOUNE the FOOL GiSKeieiiiee e 6
IMPIEMENTALION ...ttt ettt ettt e ettt e e e ent e e e e enanaeeees 6
SYSEEM SEATUD ..vneeeie et 6
TESHNG WHEL WOTKS ... e et 7
Noting What dOeS NOt WOTKuuuiiiiiiiie e 7
SYSEEM SNULAOWN ...ttt e ettt e e e et e e e e et e e e ennnaeeees 7

3L SAVING SPBCE ..ttt ettt ettt e s 8
ANBIYSIS et 8
(D= o | PP PPTRPPPPPT 8

Shared LiBrariesooooeiiiii e 8
SUPPEA BINBITES ...ttt ettt e e 8
Compressed ROO FIlESYSIEMcciiiiieiee e 8
CONSITUCTION ...ttt ettt e et e e et et e e et e e et st e e et et e e e eaba s 9
Creae @ FAMAISKieeetee ettt ettt e e ettt e e et e e e e e ena e e 9
Rebuild the BASH SNEll ... 9
Determine which libraries are reqUIredcoouuiieiiiiiiiiii e 9
Copy BASH and its libraries to the ramdiskoveiiiiiiiiiii e 9
Create @ CONSOIE UEVICE ittt et eaees 10
Compress the ramdisk IMAJEuuiiiiii e 10

Pocket Linux Guide

Copy the compressed image to diSKELEcoevviiiiiieie e 10

F 0001011 1o TN 10
SYSEEIM SEAITUD . euvntie ittt e e e e e 10
V= 1 YA (=== U PPN 11
VS (= 1T 1101 [0 1V o 11

4. SOME BASIC ULHITIES .eevuieiiiii et e et e e et e e e eaa e e e ennes 12
N 7= V£ 1P 12
1= o | TP 12
Determining Required COMMANGSc.uiiiiiiieiiiieiiie e e e e e e e e 12
(o= g To [o0 o O L= T 12
Leveraging FHS ... 12
Downloading SOUCE COOEcuuuiiiiieii e ee e e e e e e e et e e e e eaas 13

L@0] (1 0o 1o o PP 13
Create @ StAgING @Auuiivi i eii e e e e e e e e e e e e e e e et e e e e e et e e e eaas 13
Copy contents of phase 2 roOtdiSKccuiiiiiiiiiii e 13
Install binaries from GNU COTULIIScuuuiiiiiiiieiiiis e 14
Copy additional lIBrariesccouiiiii 14

Strip binaries and [HBrariesoiiiiiii e 14
Create a compressed root diSK iMagEcvvuiiiii i e 14
Write the root disk image to flOPPYvuvvviiiii e 15

F 0001011 1o TN 15
SYSEEIM SEAITUD . euveeie it e e e et e e 15
TeStiNg NEW COMMANGSuiiiieiiiieii e e e e e e e e e e e e et e e et e e et e e et e e eaneeeenaes 15
VS (= 1T 1101 [0 11T o 16

5. Checking and MOUNEING DiSKSiuuuiiiiieii e e e e e e e e e e aanas 17
N 7= V£ 17
1= o | PP 17
Determining NeCESSary ULHTTIES.couviiii e 17
FiNding SOUICE COOEiiiieii e e e e e e eaens 18
Automating fSCK and MOUNLiiiiiiii e e e e 18

File dEPENAENCIESiiii e e e e e e eees 18

@0 (1 0o 1o o PP 19
Install Utilities from €2fSPrOgScvve it e 19
Install utilities From ULH-TINUX ...ooeeen e 19
Check library reqUIrEMENSoiiiieiiee e e e e e 20

SHriP DINAIES 10 SAVE SPACE ..vuuievniiiii i eeee et e et e e e e e e e e aan e 20
Create additional device filES ... 20
Create the fstab and mtah fileSo.vviiiiiii 20
Write a script to check and mount local filesyStemscocovveiiiiiiin i, 21
Create a compressed root diSK iMagEcvvuiiiii i 21
Write the root disk image to flOPPYvueveiiiiiii e 21

F 0001011 1o TN 21
SYSEEIM SEAITUD . eu vttt e e e e e e 21

Test the 10Cal_FS SCIIPL ...ivvi i e e e e 22
Create and mount additional fileSyStemMSooeiiiiiiiiiiii e, 22
VS (= 1T 1101 [0 1V o P 23

6. Automating Startup & SHULAOWNcoouiiii e e 24
N 4 7= Y= 1P 24
1= o | TP 24
Determining NECESSAry ULTTTIESoiiviiiiii e e 24
ObBtaiNiNg SOUMCE COURovvuiiiieii e e e e e e e e e e e e eaaas 25
Checking AEPENAENCIESuiii e e e e een 25
Designing a simple GRUB configuration file.ccoooiiiiiiiiiiiiiic e, 25
OULliNING SEAM-UP SCIPLS .evuuiiiiieiiiiee e et e e e e e e e e e e e e et e et e e e eeeens 25

Pocket Linux Guide

100 (1 0o 1o o I PP 26
Create a GRUB configuration filecooouiiiiii e 26
INstall SYSVINIt ULHTITIESeevniii e e e e e e 26
Create [etC/iNIttab fIleooiie i 26
Create /etC/iNIt.A/FC SCHPL .oovniii e e e 27
Modify /etc/init.d/local fS SCIIPL ..uvuiieiii e 27
Create @ hOSINAME SCIIPLvvviieii e e e e e e e e e 28
Create halt & rebO0t SCHPLS ...vvuiiii i e e e e e 28
Create rcN.d directories and [INKSooveeiiiei e 29
Create the root diSK IMAGEevviiii e 29
Copy the IMage t0 AISKELEccvuuciei e e 29

F 0001011 1o TN 30
YA = IS = (U] o PP 30
Verify SUCCESS Of SArtUP SCIIPES ..uvvvn i cii et e e e e e e 30
VS (= 1T 11010 [0 1Y o 30

7. Enabling MUIIPIE USEY'S . .ouiiiiiii et e e e e e e an s 32

N 7= V£ 1P 32

1= o | TP 32
THE LOQIN PrOCESSvuiiiieii ettt e e e e e e e e et e e et eeaaeeaen 32
ObBtaiNiNG SOUMCE COUEivvuiiii et e e e e e e e e e e e e eaaas 32
Creating SUPPOIt fIlES ...vniii e 32
= 1= 10 L= 0o - 33
Assigning ownership and PEMMISSIONSccuuiiiiiiiiii e e e e e e e 33

@0 (1 0o 1o o PP 34
Verify presence of getty and [0gincooeuiiiiiiiiii e 34
Modify inittab for multi-user MOGEccvviiiiiii e, 34
(0= (10 =Y o= 35
Create supPOrt fIlES IN JBLC . .ovun i 35
Copy required [IBrariesooovu i 36
Set directory and file PEMMISSIONSccuiiiiiiiiii e 36
Create the root diSK IMAGEeiviiii e 37
Copy the IMage t0 diSKELEcvuui e e e 37

F 0001011 1o TN 37
SYSEEIM SEAITUD v ettt ittt et 37
Add anew User t0 the SYSEEMciiiiii e 37
Test the new user's ability to USE the SyStemMcooviiiii i, 37
VS (= 1T 1101 [0 1V o P 38

8. FilliNg INThe GaPSceviieii e e e e e e e e e aaas 39

N 7= V£ 1 39

1= o | TP 39
0010 TSP 39
MOTE EVICE FIES ... e 40
PS, SEA & B0 ..o 40

L@0] (1 0o 1o o PP 40
LAY L G T 1110 (o T | 40
Create additional device filES ... 41
TS = | I 01PN 41
TS = o 41
INSEAI @0 ..o 42
SHrip DINAIES 10 SAVE SPACE ..vunieviiiii i eeie e e et e e e e e e e e e e et e e e e 42
ENSUre Proper PEMUSSIONSu.iiieeiii e eee e e e e e e e e e e e e e e e e e e et eeaneeeenaas 42
Create the root diSk IMAGEeiviiiii e 42
Copy the IMage t0 dISKELEcvuuiiii e e 42

F 0001011 1o TN 42

Pocket Linux Guide

SYSEEIM SEAITUD . euvntie ittt e e e e e 42

=S B 1 ST 1 010 o T o) 42

USE PS t0 SHOW FUNNING PrOCESSESevveieiiiieeiteesineeeteeetn e sataeeateeatneesnneestnaeesnaeennns 43

RUN @ SIMPIE SB SCIIPL ...ieiiiiii e e e e e e e e e e e eees 43

Test the "ed" @ITOrvu i e e e 43
VS (= 1T 1101 [0 1V o 43

LI o= o YT =" o 0 o 44
Celebrating ACCOMPIISNMENTSiiiiiiii e e e e e e e e e e e aanns 44
Planning NEXE SEEDS ...vvuiiiiieii e e e e e e e 44
AN o To= 1] g o AN o] o] o= 1= 45
N 7= V£ 1P 45
1= o | TP 45
Support for aUdio hardWareoeiuiiiii e e 45
Creating space for the Programc.uii i 45
ACCESSING AUAIO FIlES .oviiiei e 46
Other reqUIred filES ... e 47
SUMMANY OF TASKS ...evuiiii e e e e e e e e e e e e e e eaneens 47

100 (1 0o 1o o I PP 47
Create an enhanced boot diSKviiiiiiiiiii 47
Create an enhanced rOOL diSKoovieuiiiiiiii e 48
Create a compressed /usr disk for mp3blasterccovveiiiiiiiiiii e, 50
Create a data diskette for tEStINGccvueiiiiiiii e e 51

F 0001011 1o TN 51
SYSEEIM SEAITUD v ettt ittt e e 51
Verify that the /usr diskette loaded Properlycc.oeevviiiiiiieiie e, 51
Check the audio device INtialiZationooveiiiiiiiiiii e 51

L= =10 To (1o T 1011 | PPN 51

Play @ sample file ..o 51
Y= (= 10T 1101 [0 1V o P 52

B. GNU Free DOCUMENLEiON LICENSEvuuieiiiiiieee it e et e et e et e e e e e et e e e et e e e et 53
PREAMBLE ..o ettt e e ettt e e et e e et e et e eaaat e aae 53
APPLICABILITY AND DEFINITIONS ..ottt e e 53
VERBATIM COPYING ...uiiiiiiiiieiiiii ettt e et s e et s e e et neeeannneeaennnns 54
COPYING IN QUANTITY ittt ettt ettt e e e e e e et e e e et e e e eatnaeeeenes 54
MODIFICATIONS .ottt ettt e et e et et e e e et e e e e et e e e e et s 55
COMBINING DOCUMENTS ..ottt ettt e e e e e et s e e e et s e e eeraaeaees 56
COLLECTIONS OF DOCUMENTS ... ittt e e et e e e e e 57
AGGREGATION WITH INDEPENDENT WORKS ..ottt 57
TRANSLATION ittt e et e e e e ettt e e e ettt e e e ett e e e eett e eeeeaenaeaeees 57
TERMINATION L.oiiiiiiii ettt e et e e et e e e et e e e et e e e et e e e eaan s 57
FUTURE REVISIONS OF THISLICENSEccootiiiiiiiiiic e 57
ADDENDUM: How to use this License for your doCUMENtScc.ovevvvieeiieeiiieeieeeineenn 58

Vi

Legal Information
Copyright and License

This document, Pocket Linux Guide, is copyright () 2003 - 2005 by David Horton. Permission is granted
to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available at the end
of this document.

Linux is aregistered trademark of Linus Torvalds.

Disclaimer

Thisdocumentation is provided as-iswith no warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Use the
concepts, examples and information at your own risk. The author(s) do not take any responsibility for
damages that may arise from the use of this document.

All copyrights are held by their respective owners, unless specifically noted otherwise. Use of aterm in
this document should not be regarded as affecting the validity of any trademark or service mark. Naming
of particular products or brands should not be seen as endorsements.

Vii

Introduction
About Pocket Linux

The Pocket Linux Guide demonstrates how to build a small console-based GNU/Linux system using only
source code and a couple of diskettes. It is intended for Linux users who would like to gain a deeper
understanding about how their system works beneath the shroud of distribution specific features and tools.

Prerequisite Skills

Thisguideisintended for intermediate to advanced Linux users. It is not intentionally obscure, but certain
assumptions about the readers skill level are made. Success with this guide depends in part on being able
to perform the following tasks:

» Use basic shell commands
» Reference man and info pages
» Build acustom Linux kernel

» Compile source code using make and related tools

Project Format

The Pocket Linux Guide takes a hands-on approach to learning. The guide is written with each chap-
ter building a piece of an overall project. Chapters are further broken into sections of Analysis, Design,
Construction and Implementation. This format is derived from Rapid Application Development (RAD)
methodology. Without going into detail about design methodologies, the sections may be summed up as
follows.

» The Analysis section gives ahigh-level overview of what isto be accomplished in each chapter. It will
introduce the tasks that need to be completed and why they are important to the overall system.

» The Design section defines the source code packages, files and configuration necessary to address the
reguirements set forth in the Analysis section. Much of the theory of why certain system files exist and
what their purposeis can be found here.

» The Construction sectioniswhere all the hands-on action takes place. This section goesinto detail about
building source code and configuring the system files.

» Thelmplementation section will test the proper operation of the project at the end of each chapter. Often
there are afew shell commands to perform and samples of expected screen outputs are given.

Readers interested in learning more about RAD may want to consult a textbook covering systems analy-
sis and design or visit the following University of Caifornia, Davis website on the subject: http://
sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm.

Help & Support

Readers are encouraged to visit the Pocket Linux Resource Site at http://pocket-linux.sourceforge.net/
[http://pocket-linux.sourceforge.net]. The resource site is home to:

viii

http://sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm
http://sysdev.ucdavis.edu/WEBADM/document/rad-stages.htm
http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

Introduction

Information about the Pocket Linux mailing list.
» A web-based troubleshooting forum where readers can ask questions and give tips to others.

» A collection of diskette images for various chapters.

Additional projects that may be of interest to Pocket Linux Guide readers.

Feedback

For technical questions about Pocket Linux please use the mailing list or the troubleshooting forum on the
resource site [http://pocket-linux.sourceforge.net]. General comments and suggestions may be sent to the
mailing list or emailed to the author directly.

http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

Chapter 1. Project Initiation
A Brief History of GNU/Linux

In the early 90's GNU/Linux systems consisted of little more than a beta-quality Linux kernel and a small
collection of software ported from the GNU project. It was a true hacker's operating system. There were
no CD-ROM's or GUI installation tools; everything had to be compiled and configured by the end user.
Being a Linux Expert meant knowing your system inside and out.

Toward the middle of the decade several GNU/Linux distributions began appearing. One of the first was
Slackware [http://www.dlackware.org] in 1993 and since then there have been many others. Even though
there are many "flavors' of Linux today, the main purpose of the distribution remains the same. The
distribution automates many of the tasksinvolved in GNU/Linux installation and configuration taking the
burden off of the system administrator. Being a Linux Expert now means knowing which button to click
in the GUI administration tool.

Recently there has been ayearn for areturn to the "good old days' of Linux when men were men, sysad-
mins were hardcore geeks and everything was compiled from source code. A notable indication of this
movement was the publication of the Linux-From-Scratch-HOWTO version 1.0 by Gerard Beekmansin
1999. Being a Linux Expert once again means knowing how to do it yourself.

For more historical information, see Ragib Hasan's "History of Linux" at http://netfiles.uiuc.edu/rhasan/
linux

The Goal of Pocket Linux

The purpose of Pocket Linux isto support and encourage people who wish to explore Linux by building a
GNU/Linux system from nothing but source code. Pocket Linux isnot intended to beafull featured system,
but rather to give the reader ataste of what isinvolved in building an operating system from source code.
After completing the Pocket Linux system the reader should have enough knowledge to confidently build
almost any project using only source code. Given this direction we can put afew constraints on the project.

» Themain focus should be learning. The project should not just describe how to do something, it should
also describe why it should be done.

» Therequired time commitment should be minimal and manageable.

» The project should not require any investment in additional hardware or reconfiguration of existing
hardware to set up alab environment.

» Readers should not need to know any programming languages in order to compl ete the project.

» Toremain true to the spirit of GNU/Linux, all software used in the project should be covered under the
GNU/GPL or another, similarly liberal, open-source license.

Working Within The Constraints

The Pocket Linux project gets its name from the fact that the bulk of the project fits onto two diskettes
making it possibleto carry the entire, working system around in one's pocket. This hasthe advantage of not
requiring any additional hardware since any PC can be booted from the diskettes without disrupting any
OS that exists on the hard drive. Using diskettes also partially addresses the aspect of time commitment,

http://www.slackware.org
http://www.slackware.org
http://netfiles.uiuc.edu/rhasan/linux
http://netfiles.uiuc.edu/rhasan/linux

Project Initiation

because the project size and complexity is necessarily limited by the 1.44 Megabyte size of the installation
media.

To further reduce the time commitment, the Pocket Linux project is divided into several phases, each one
chapter in length. Each phase builds only a small piece of the overal project, but at the same time the
conclusion of each chapter resultsin a self-contained, working system. This step-by-step approach should
allow readersto pace themselves and not feel the need to rush to see results.

Chapters are further subdivided into four sections. The first two sections, analysis and design, focus on
the theory of what is to be accomplished in each phase and why. The last two sections, construction and
implementation, detail the steps needed to do the actual building. Advanced readers, who may be familiar
with the theories laid out in a particular chapter are encouraged to gloss over the analysis and design
sections in the interest of time. The separation of theory from hands-on exercises should allow readers of
all skill levelsto complete the project without feeling either completely lost or mired in too much detail.

Finally, the Pocket Linux project will strive to use GNU/GPL software when possible and other open-
source licensed software when there is no GNU/GPL alternative. Also, Pocket Linux will never require
any programming more complex than a BASH shell script.

Chapter 2. A Simple Prototype

Analysis

Since this is the first phase of the project it will be kept very simple. The goal here is not to create the
ultimate GNU/Linux system on thefirst try. Instead, we will be building a very minimal, working system
to be used as a building block in subsequent phases of the project. Keeping this in mind, we can list a
few goalsfor phase one.

» Keep it simpleto avoid stressing out.

 Build something that works for instant gratification.

e Make something that it is useful in later phases of the project.
Design

Simplification

Take a moment to skim through the Bootdisk-HOWTO or the From-PowerUp-to-BA SH-Prompt-HOW-
TO. These HOWTO documents can be found online at http://www.tldp.org/docs.html#howto. Both doc-
uments offer an excellent view of what it takes to get a GNU/Linux system up and running. Thereis also
alot of information to digest. Remember that one of our goalsis, "keep it simple to avoid stressing out,”
S0 we want to ignore everything but the absolutely critical pieces of aboot / root diskset.

Basically it boils down to the following required items:

» A boot |oader

The Linux kernel

A shell
» Some/ dev files

We don't even need an init daemon. The kernel can be told to run the shell directly by passing it an option
through the boot loader.

For easy construction we will build a two-disk boot / root set rather than trying to get everything onto a
singlediskette. The boot loader and kernel will go on the boot disk and the shell will reside on theroot disk.

Boot Disk

For the boot disk we simply need to install the GRUB bootloader and a Linux kernel. We will need to
use a kernel that does not require modules for the hardware we need to access. Mainly, it should have
compiled-in support for the floppy drive, ram disk, second extended filesystem, proc filesystem, ELF
binaries, and atext-based console. If such akernel isnot available, it will need to be built from source code.
Kwan Lowe'sKernel Rebuild Guide[http://www.digitalhermit.com/linux/K ernel-Build-HOWTO.html] is
agood reference for this task, however we can ignore the sections that deal with modules and the initial
ramdisk.

http://www.tldp.org/docs.html#howto
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

A Simple Prototype

Root Disk

For theroot disk wewill need afloppy that has been prepared with afilesystem. Wewill also need aBASH
shell that is statically-linked so we can avoid the additional complexities of shared libraries. The configure
program in the BASH source code recognizes the - - enabl e- st ati c- | i nk option for this feature.
We will also be using the - - enabl e- ni ni mal - conf i g option to keep the BASH binary down to
a manageable size. Additional requirements for the root disk are a/ dev directory and a device file for
the console. The consol e device is required for BASH to be able to communicate with the keyboard
and video display.

CPU Compatibility

Thereisoneother, lessobviousrequirement to keep in mind and that is CPU compatibility. Each generation
of CPU features a more complex architecture than its predecessor. Late generation chips have additional
registersand instructions when compared to an ol der 486 or 386. So akernel optimized for anew, fast 6x86
machine will not run on an older box. (See the READMVE file in the Linux kernel source code for details.)
A BASH shell built for a 6x86 will probably not run on an older processor either. To avoid this problem,
we can choose the 386 as a lowest common denominator CPU and build all the code for that architecture.

Construction

In this section, we will be building the actual boot disk and root disk floppies. Lines preceded by bash#
indicate a shell command and lines starting with gr ub> indicate a command typed within the grub shell.

Prepare the boot disk media

Insert ablank diskette labeled "boot disk”.

Note

It may be necessary to erase the "blank™ diskette if it comes factory pre-formatted for another,
non-Linux operating system. This can be done using the command dd if=/dev/zer o of=/dev/fd0
bs=1k count=1440

bash# nke2fs -nD /dev/fdO
bash# nount /dev/fdO /nmmt

Build the GRUB bootloader

Get the GRUB source code from ftp://alpha.gnu.org/gnu/grub/ and unpack itintothe/ usr / sr ¢ directory.
Configure and build the GRUB source code for an 386 processor by using the following commands:

bash# cd /usr/src/grub-0.95

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --host=i 386-pc-1inux-gnu --w thout-curses
bash# make

Copy the bootloader files to diskette

Normally, after compiling source code, one would use the command make install to copy the finished
filesto their proper destinations in the filesystem. However, using make install does not work well with
small media like the floppy disks we are using. The problem is that there are many files in a package

ftp://alpha.gnu.org/gnu/grub/

A Simple Prototype

besidesthe actual binariesthat get thejob done. For example, there are often man or info pagesthat provide
documentation. These extra files can take up more space than we can spare on the diskette. We can work
around this limitation by copying essential files manually rather than using make install.

For GRUB to boot we will need to copy the stagel and stage? bootloader files to the / boot / gr ub
directory on the boot floppy.

bash# nkdir -p /mmt/boot/grub
bash# cp /usr/src/grub-0.95/stagell/ stagel / mt/boot/grub
bash# cp /usr/src/grub-0.95/stage2/stage2 / mt/boot/grub

Finish bootloader installation

Build

Once the bootloader's files are copied to the boot disk we can enter the grub shell to finish the installation.

bash# /usr/src/ grub-0.95/grub/grub
grub> root (fd0)

grub> setup (fdO)

grub> quit

the Linux kernel

Thestepsfor building thekernel weretested using Linux kernel version 2.4.26 and should work any 2.4.x or
2.6.x kernel. Thelatest version of the kernel source code may be downloaded from http://www.kernel.org/
or one of itsmirrors.

Note

Theinstructions below are very brief and are intended for someone who has previous experience
building custom kernels. A more detailed explanation of the kernel building process can be found
in the Kernel Rebuild Guide [http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html]
by Kwan Lowe.

bash# cd /usr/src/linux
bash# make nenuconfig

Be sure to configure support for the following:

» 386 processor

e Console on virtua terminal (2.4.x kernels only)
» ELF binaries

» Floppy disk

* proc filesystem

* RAM disk with a default size of 4096K

» Second extended (ext2) filesystem

* VGA console

bash# make dep
bash# make cl ean
bash# make bzl mage

http://www.kernel.org/
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html

A Simple Prototype

Copy the kernel to diskette

bash# cp /usr/src/linux/arch/i 386/ boot/bzlmge /mt/boot/vm inuz

Unmount the boot disk

bash# cd /
bash# unpunt /mt

Prepare the root disk media

Build

Insert ablank diskette labeled "root disk".

bash# nke2fs -nD /dev/fdO
bash# nmount /dev/fdO /mmt

BASH

Get the bash-3.0 source code package from ftp://ftp.gnu.org/gnu/bash/ and untar it into the / usr/ src
directory.

Build BASH for an i386 CPU with the following commands:

bash# cd /usr/src/bash-3.0

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --enable-static-link \
--enabl e-m ni mal - confi g --host=i 386-pc-1inux-gnu

bash# make

bash# strip bash

Copy BASH to the root disk

bash# nkdir /mt/bin
bash# cp bash /mmt/ bi n/ bash
bash# In -s bash /mt/bin/sh

Create device files that BASH needs

bash# nkdir /mt/dev
bash# nknod /mmt/dev/console ¢ 5 1

Unmount the root disk

bash# cd /
bash# unount /mt

Implementation

System startup

Follow these steps to boot the system:

ftp://ftp.gnu.org/gnu/bash/

A Simple Prototype

» Restart the PC with the boot disk in the floppy drive.

» When the gr ub> prompt appears, type kernel (fd0)/boot/vm inuz init=/bin/sh
root =/ dev/fdO | oad_randi sk=1 pronpt_randi sk=1 and press Enter.

» After the kernel loads, type boot and press Enter.
* Insert the root disk when prompted.
If al goeswell the screen should look something like the example shown below.

GNU GRUB version 0.95

grub> kernel (fd0)/boot/vminuz init=/bin/sh root=/dev/fdO |oad_randi sk=1 pronpt_r
[Li nux- bzl mage, setup=0xc00, size=0xce29b]

gr ub> boot
Li nux version 2.4.26
[vari ous kernel nessages]

VFS: Insert root floppy disk to be |oaded into RAM di sk and press ENTER
RAMDI SK: ext?2 fil esystem found at block 0

RAMDI SK: Loadi ng 1440 bl ocks [1 disk] into ramdisk... done.

VFS: Mounted root (ext2 filesystem readonly.

Freei ng unused kernel nenory: 178k freed

#

Testing what works

Try out afew of BASH's built-in commands to see if things are working properly.

bash# echo "Hello Worl d"
bash# cd /

bash# pwd

bash# echo *

Noting what does not work

Try out afew other familiar commands.

bash# |s /var
bash# nkdir /var/tnp

Noticethat only commandsinternal to BASH actually work and that external commandslikelsand mkdir
do not work at all. This shortcoming is something that can be addressed in a future phase of the project.

For now we should just enjoy the fact that our prototype boot / root diskset works and that it was not all
that hard to build.

System shutdown

Remove the diskette from fdO and restart the system using CTRL-ALT-DELETE.

Chapter 3. Saving Space

Analysis

One of the drawbacksin the prototype phase of the project was that the diskset was not all that useful. The
only commands that worked were the ones built into the BASH shell. We could improve our root disk by
installing commandslike cat, Is, mv, rm and so on. Unfortunately, we are short on space. The current root
disk has no shared libraries so each utility would have to be statically-linked just like the BASH shell. A
lot of big binaries together with a static shell will rapidly exceed the tiny 1.44M of available disk space.
So our main goal in this phase should be to maximize space savings on the root disk and pave the way
for expanded functionality in the next phase.

Design

Take another look at the Bootdisk-HOWTO and notice how many utilities can be squeezed onto a 1.44M
floppy. There are three things that make this possible. One is the use of shared libraries. The second is
stripped binaries. And the third is the use of a compressed filesystem. We can use all of these techniques
to save space on our root disk.

Shared Libraries

First, in order to use shared libraries we will need to rebuild the BASH shell. Thistime we will configure
it without using the - - enabl e- st ati c-1i nk option. Once BASH is rebuilt we need to figure out
which librariesit islinked with and be sure to include them on theroot disk. Theldd command makes this
job easy. By typing ldd bash on the command-line we can see alist of all the shared libraries that BASH
uses. Aslong as all these libraries are copied to the root disk, the new BASH build should work fine.

Stripped Binaries

Next, we should strip any binaries that get copied to the root disk. The manpage for strip does not give
much description of what it does other than to say, "strip discards al symbols from the object files." It
seems like removing pieces of abinary would render it useless, but thisis not the case. Thereason it works
is because alarge number of these discarded symbols are used for debugging. While debugging symbols
are very helpful to programmers working to improve the code, they do not do much for the average end-
user other than take up more disk space. And since space is at a premium, we should definitely remove as
many symbols as possible from BASH and any other binaries before we copy over them to the ramdisk.

The process of stripping files to save space also works with shared library files. But when stripping li-
brariesitisimportant to usethe- - st ri p- unneeded option so asnot to break them. Using - - st r i p-
unneeded shrinks the file size, but leaves the symbols needed for relocation intact which is something
that shared libraries need to function properly.

Compressed Root Filesystem

Finally, we can tackle the problem of how to build a compressed root filesystem. The Bootdisk-HOWTO
suggests three ways of constructing a compressed root filesystem using either a ramdisk, a spare hard
drive partition or aloopback device. This project will concentrate on using the ramdisk approach. It seems
logical that if the root filesystem is going to be run from a ramdisk, it may as well be built on a ramdisk.
All we have to do is create a second extended filesystem on a ramdisk device, mount it and copy files
to it. Once the filesystem is populated with all the files that the root disk needs, we simply unmount it,
compress it and write it out to floppy.

Saving Space

Note

For this to work, we need to make sure the system used for building has ramdisk support. If
ramdisk is not available it is also possible to use aloopback device. See the Bootdisk-HOWTO
for more information on using loopback devices.

Construction

This section iswritten using ramdisk seven (/ dev/ r an¥) to build the root image. There is nothing par-
ticularly special about ramdisk seven and it is possible to use any of the other available ramdisks provided
they are not already in use.

Create a ramdisk

bash# dd if=/dev/zero of =/dev/ranv bs=1k count=4096
bash# nke2fs -nD /dev/ranv 4096
bash# nmount /dev/ranv¥ /mt

Rebuild the BASH shell

bash# cd /usr/src/bash-3.0

bash# nmake di stcl ean

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --enable-mninmal-config --host=i 386-pc-1inux-gnu
bash# nmake

bash# strip bash

Determine which libraries are required

bash# | dd bash
View the output from the Idd command. It should look similar to the example below.

bash# | dd bash
libdl.so0.2 => /lib/libdl.so.2 (0x4001d000)
libc.so.6 =>/lib/libc.so.6 (0x40020000)
/[lib/ld-l1inux.so0.2 => /lib/ld-1inux.so.2 (0x40000000)

Note

Somesystemsmay haveasdlightly different library set up. For example, youmay seel i bc. so. 6
=> /lib/tls/libc.so.6raherthanlibc.so.6 => /lib/libc.so.6asshownin
the example. If your Idd output does not match the example then use the path given by your I1dd
command when completing the next step.

Copy BASH and its libraries to the ramdisk

bash# nkdir /mmt/bin

bash# cp bash /mt/bin

bash# I n -s bash /mt/bin/sh

bash# nkdir /mt/lib

bash# strip --strip-unneeded -o /mt/lib/libdl.so.2 /lib/libdl.so.2

Saving Space

bash# strip --strip-unneeded -o /mt/lib/libc.so.6 /lib/libc.so.6

bash# strip --strip-unneeded -o /mt/lib/ld-linux.so.2 /lib/ld-linux.so.2

bash# chnpd +x /mt/lib/ld-1inux. so. 2

Note

Using strip -0 might seem an odd way to copy library files from the development system to the
ramdisk. What it does is strip the symbols while the file isin transit from the source location to
the destination. This has the effect of stripping symbols from the library on the ramdisk without
altering the libraries on the development system. Unfortunately file permissions are lost when
copying libraries this way which is why the chmod +x command is then used to set the execute
flag for the rootdisk's dynamic loader.

Create a console device

bash# nkdir /mmt/dev
bash# nknod /mmt/dev/console ¢ 5 1

Compress the ramdisk image

bash# cd /

bash# unount /dev/ranv

bash# dd if=/dev/ranv of =~/ phase2-i mage bs=1k count =4096
bash# gzip -9 ~/phase2-i mage

Copy the compressed image to diskette

Insert the floppy labeled "root disk" into drive fdO.

bash# dd if=~/phase2-image. gz of =/ dev/fd0 bs=1k

Implementation

Successful implementation of this phase is probably the most difficult part of the Pocket Linux Guide.
If you need help getting things to work please visit the Pocket Linux Guide Resource Site [http://pock-
et-linux.sourceforge.net] to browse the troubleshooting forum and subscribe to the mailing list.

System startup

Follow these steps to boot:
» Restart the PC using the boot disk from the previous chapter.

» Atthe gr ub> prompt, typeker nel (fdO0)/boot/vminuz init=/bin/sh root=/dev/
fdO | oad_randi sk=1 pronpt randi sk=1 and press Enter.

» Typeboot atthegr ub> prompt and press Enter.
* Insert the new, compressed root disk when prompted.
The screen output should be similar to the following example:

GNU GRUB version 0.95

10

http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net
http://pocket-linux.sourceforge.net

Saving Space

grub> kernel (fdO0)/boot/vm inuz init=/bin/sh root=/dev/fd0 |oad_randisk=1 pronpt_r
[Li nux- bzl mage, setup=0xc00, size=0xce29b]

gr ub> boot
Li nux version 2.4.26
[various kernel nessages]
VFS: Insert root floppy disk to be | oaded into RAM di sk and press ENTER
RAMDI SK: Conpressed i mage found at block O
VFS: Myunted root (ext2 filesystem readonly.

Freei ng unused kernel nenory: 178k freed
#

Verify results
If the implementation was successful, this new root disk should behave exactly like the root disk from the

previous chapter. The key difference is that this compressed root disk has much more room to grow and
we will put this extra space to good use in the next phase of the project.

System shutdown

Remove the diskette from fdO and restart the system using CTRL-ALT-DELETE.

11

Chapter 4. Some Basic Utilities

Analysis

In the previous chapter it might seem like we did not accomplish very much. A ot of energy was expended
redesigning the root disk, but the functionality is basically the same asin theinitial prototype phase. The
root disk still does not do very much. But we did make significant improvements when it comes to space
savings. In this chapter we will put that extra space to good use and start cramming the root disk with as
many utilities asit can hold.

The first two root disks we built only had shell built-in commands like echo and pwd. Thistimeit would
be nice to have some of the commonly used external commands like cat, |s, mkdir, rm and such on the
root disk. Keeping thisin mind we can define the goals for this phase as follows:

* Retain all of the functionality from the previous root disk.

» Add some of the commonly used external commands.

Design

Determining Required Commands

The first question that might come to mind is, "How do we know which commands are needed?’ It is
possible to just start with cat and Is then install other commands as we discover a need for them. But this
isterribly inefficient. We need a plan or a blueprint to work from. For this we can turn to the Filesystem
Hierarchy Standard (FHS) available from http://www.pathname.com/fhs/. The FHS dictates which com-
mands should be present on a Linux system and where they should be placed in the directory structure.

Locating Source Code

The next logical question is, "Now that we know what we need, where do we get the source code?' One
way to find the answer to this question is to check the manpages. We can either search the manpages
included with one of the popular GNU/Linux distributions or use one of the manpage search engineslisted
at http://www.tldp.org/docs.html#man. One thing that should tip us off asto whereto find the source code
for aparticular command is the email address listed for reporting bugs. For example the cat manpage lists
bug-textutils@gnu.org. From this email address we can deduce that cat is part of the textutils package
from GNU [http://gnu.org].

Leveraging FHS

So let's look at the FHS requirements for the / bi n directory. The first few commands in the list are cat,
chgrp, chmod, chown and cp. We already know that cat is part of GNU's textutils. Using the next few
commands as keywordsin amanpage search we discover that we need GNU'sfileutils packagefor chmod,
chgrp, chown and cp. In fact quite afew of the commandsin/ bi n come from GNU'sfileutils. The date
command al so comesfrom a GNU package called sh-utils. So agood way to tackle the problem of finding
source code might be to group the commands together by package as shown below.

» The BASH shell -- echo, false, pwd, sh, true

* GNU textutils-- cat

12

http://www.pathname.com/fhs/
http://www.tldp.org/docs.html#man
http://gnu.org
http://gnu.org

Some Basic Utilities

» GNU fileutils-- chgrp, chmod, chown, cp, dd, df, In, Is, mkdir, mknod, mv, rm, rmdir, sync
* GNU sh-utils -- date, hostname, stty, su, uname

These four packages do not contain al of the commandsin the/ bi n directory, but they do represent of
over 70% of them. That should be enough to accomplish our goal of adding some of the commonly used
external commands. We can worry about the other commands in later phases of the project.

Downloading Source Code

To fetch the source code we simply need to connect to GNU's FTP site [ftp://ftp.gnu.org/gnu] and navigate
to the appropriate package directory.

When we get to thedirectory for textutilsthere are several versionsavailable. Thereisalso anoteinforming
usthat the package has been renamed to coreutils. The same message about coreutils appearsin thefileutils
and sh-utils directories aswell. So instead of downloading three separate packages we can get everything
in one convenient bundle in the coreutils directory.

Construction

Rather than copying files directly to the ramdisk, we can make things easier by setting up a staging area.
The staging areawill give us room to work without worrying about the space constraints of the ramdisk.
It will also provide away to save our work and make it easier to enhance the rootdisk in later phases of
the project.

The staging procedure will work like this:

1. Create adirectory structure as defined in the FHS.

2. Copy inthefilesfrom phase 2's root disk.

3. Build the new package from source code.

4. Install filesinto the correct FHS directories.

5. Strip the binaries to save space.

6. Check library dependencies.

7. Copy to the whole directory structure to the ramdisk.

8. Compress the ramdisk and write it out to floppy.

Create a staging area

bash# nkdir ~/staging

bash# cd ~/staging

bash# nkdir bin boot dev etc hone Iib mt opt proc root sbin tnp usr var
bash# nkdir var/l og var/run

Copy contents of phase 2 rootdisk

bash# dd if=~/phase2-image.gz | gunzip -c > /dev/ranv
bash# mount /dev/ranv /mt

13

ftp://ftp.gnu.org/gnu
ftp://ftp.gnu.org/gnu

Some Basic Utilities

bash# cp -dpR /mt/* ~/staging
bash# unmount /dev/ranv
bash# rndir ~/staging/l ost+found

Install binaries from GNU coreutils

Download arecent version of coreutils from ftp://ftp.gnu.org/gnu/coreutils/

bash# cd /usr/src/coreutils-5.2.1

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --host=i 386-pc-Iinux-gnu

bash# make

bash# cd src

bash# cp cat chgrp chnod chown cp date dd df ~/staging/bin
bash# cp hostnane In I's nkdir nkfifo nmknod ~/staging/bin
bash# cp mv rmrndir stty su sync unane ~/staging/bin

Copy additional libraries

Check library requirements by using Idd on some of the new binaries.

bash# 1 dd ~/stagi ng/ bi n/ cat
bash# 1dd ~/staging/bin/ls
bash# |1 dd ~/stagi ng/bin/su
bash# |'s ~/staging/lib

Note the differences in the required libraries, as shown by the ldd command, and the libraries present in
the staging area, as shown by the Is command, then copy any missing libraries to the staging area.

bash# cp /lib/librt.so.1 ~/staging/lib
bash# cp /lib/libpthread.so.0 ~/staging/lib
bash# cp /lib/libcrypt.so.1 ~/staging/lib

Strip binaries and libraries

bash# strip ~/staging/bin/*
bash# strip --strip-unneeded ~/staging/lib/*

Create a compressed root disk image

bash# cd /

bash# dd if=/dev/zero of=/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/ram/ 4096

bash# nount /dev/ran¥ /mt

bash# cp -dpR ~/staging/* / mt

bash# unount /dev/ranv

bash# dd if=/dev/ran¥ of =~/ phase3-i mage bs=1k count =4096
bash# gzip -9 ~/phase3-i nage

Note

The process for creating the compressed root disk image will change very little throughout the
remaining chapters. Writing a small script to handle this function can be a great time saver.

14

ftp://ftp.gnu.org/gnu/coreutils/

Some Basic Utilities

Write the root disk image to floppy

Insert the diskette labeled "root disk" into drive fdO.

bash# dd if=~/phase3-image. gz of =/ dev/fd0 bs=1k

Implementation

We will need to have a read-write filesystem in order for some of the commands to work. The kernel's
normal behavior isto mount root as read-only, but we can change this using a kernel option. By passing
the kernel the r woption beforei ni t =/ bi n/ sh we will get aread-write root filesystem.

System startup

Follow these steps to get the system running.
» Boot the PC from using the GRUB boot disk.

« At the gr ub> prompt, type kernel (fd0)/boot/vminuz rw init=/bin/sh root=/
dev/fdO | oad_randi sk=1 pronpt_randi sk=1.

 Verify that you remembered to add the r w parameter and press Enter.
e Type boot and press Enter.

* Insert the recently created root disk when prompted.

The terminal display should look similar to the example below.

G\NU CGRUB version 0.95

grub> kernel (fd0O)/boot/vminuz rwinit=/bin/sh root=/dev/fd0 |oad _randi sk=1 pronp
[Li nux- bzl nage, setup=0xc00, size=0xce29b]

gr ub> boot
Li nux version 2.4.26
[various kernel nessages]

VFS: Insert root floppy disk to be | ocaded into RAM di sk and press ENTER
RAMDI SK: Conpressed i mage found at block O

VFS: Mounted root (ext2 filesystem read-wite.

Freei ng unused kernel menory: 178k freed

#

Testing new commands

Now that the system is up and running, try using some of the new commands.

bash# unane -a
bash# |s /etc
bash# echo "Pocket Li nux" > /etc/hostname

15

Some Basic Utilities

bash# host name $(cat /etc/hostnane)
bash# uname -n

bash# nkdir /hone/ stuff

bash# cd / hone/ st uff

If everything goes well the commands like cat, Is and hostname should work now. Even mkdir should
work since the root filesystem is mounted read-write. Of course since we are using aramdisk, any changes
will be lost once the PC is reset.

System shutdown

Remove the diskette from fdO and restart the system using CTRL-ALT-DELETE.

16

Chapter 5. Checking and Mounting
Disks

Analysis

In the previous chapter we added many new commands by installing coreutils and as aresult the root disk
has alot more functionality. But there are still afew things lacking. One thing that really stands out is that
there was no way to mount disks. In order to get aread-write root filesystem we had to resort to passing the
r wkernel parameter at the gr ub> prompt. Thisisfine for an emergency situation, but a normal system
boot process should do things differently.

Most GNU/Linux distributions take several steps to mount filesystems. Watching the boot process or
digging into the startup scripts on one of the popular Linux distributions reveals the following sequence
of events:

1. The kernel automatically mounts the root filesystem as read-only.

2. All local filesystems are checked for errors.

3. If filesystems are clean, root is remounted as read-write.

4. Therest of thelocal filesystems are mounted.

5. Network filesystems are mounted.

So far our Pocket Linux system can do step one and that isit. If we want to have a professional looking
boot / root diskset we will have to do better than one out of five. In this phase of the project we will work
on steps two and three. Steps four and five can wait. Since thisis a diskette-based system, there redly are
no other filesystems to mount besides root.

Taking into account all of the above information, the goals for this phase are defined as follows:

» A way to check filesystem integrity.

* The ability to mount filesystems.

* A script to automate checking and mounting of local filesystems.
Design

Determining necessary utilities.

We can use the Filesystem Hierarchy Standard (FHS) document to help find the names of utilities we
need and where they reside in the directory structure. The FHS / sbi n directory lists fsck and some-
thing called fsck.* for checking filesystems. Since we are using a Second Extended (ext2) filesystem the
fsck.* becomesfsck.ext2 for our purposes. Mounting filesystems is done using the commands mount and
umount in the/ bi n directory. However, the name of a script to automatically mount local filesystems
cannot be found. On most systems this type of script isin the/ et ¢ directory, but while FHS does list
requirements for / et c, it does not currently make recommendations for startup scripts. Several GNU/

17

Checking and Mounting Disks

Linux distributionsuse/ et ¢/ i ni t . d asthe place to hold startup scripts so we will put our filesystem
mounting script there.

Finding source code

In the previous chapter we used manpages to help us find source code. In this chapter we will use a tool
called the Linux Software Map (LSM). LSM isadatabase of GNU/Linux software that tracks such things
as package name, author, names of binaries that make up the package and download sites. Using an LSM
search engine we can locate packages using command names as keywords.

If we search Ibiblio's Linux Software Map (LSM) at http://www.ibiblio.org/pub/Linux/ for the keyword
"fsck" we get a large number of matches. Since we are using a Second Extended filesystem, called ext2
for short, we can refine the search using "ext2" as a keyword. Supplying both keywords to the LSM
search engine comes up with a package caled e2fsprogs. Looking at the LSM entry for e2fsprogs we
find out that this package contains the utilities e2fsck, mke2fs, dumpe2fs, fsck and more. We aso find
out that the LSM entry for e2fsprogs has not been updated for awhile. There is ailmost certainly a newer
version out there somewhere. Another good Internet resource for source code is SourceForge at http://
sourceforge.net/. Using the keyword "e2fsprogs’ in the SourcelForge search engine resultsin amuch newer
version of e2fsprogs.

Finding fsck was quite an adventure, but now we can move on to finding mount and umount. A search on
L SM comes up with a number of matches, but most of them point to various versions of a package called
util-linux. All we have to do is scroll through and pick the most recent release. The LSM entry for util-
linux lists alot of utilities besides just mount and umount. We should definitely scan through the list to
seeif any of the other util-linux commands show up in the FHS requirements for / bi n and/ sbi n.

Below isalist of packages we have gathered so far and the utilities that match up with FHS.
» e2fsprogs -- fsck, fsck.ext2 (e2fsck), mkfs.ext2 (mke2fs)

o util-linux -- dmesg, getty (agetty), kill, login, mount, swapon, umount

Automating fsck and mount

Now that we have fsck and mount commands we need to come up with ashell script to automate checking
and mounting the local filesystems. An easy way to do this would be to write a short, two line script
that calls fsck and then mount. But, what if the filesystems are not clean? The system should definitely
not try to mount a corrupted filesystem. Therefore we need to devise away of determining the status of
the filesystems before mounting them. The manpage for fsck gives some insight into how this can be
accomplished using return codes. Basically, if fsck returns a code of zero or one it means the filesystem
is okay and a return code of two or greater means some kind of manual intervention is needed. A simple
if-then statement could evaluate the fsck return code to determine whether or not the filesystem should be
mounted. For help on writing shell scriptswe can turn to the BASH(1) manpage and the Advanced-BA SH-
Scripting-Guide. Both references are freely available from the Linux Documentation Project web site at
http://www.tldp.org/.

File dependencies

The last thing to do is to figure out if any other files besides the binaries are needed. We learned about
using ldd to check for library dependenciesin the last phase of the project and we will use it to check the
utilitiesin this phasetoo. There are also some other filesthat fsck and mount will need and the fsck(8) and
mount(8) manpages give some insight into what those files are. Thereis/ et c/ f st ab that lists devices
and their mount points, / et ¢/ nt ab that keeps track of what is mounted, and a number of / dev files
that represent the various disks. We will need to include al of these to have everything work right.

18

http://www.ibiblio.org/pub/Linux/
http://sourceforge.net/
http://sourceforge.net/
http://www.tldp.org/

Checking and Mounting Disks

/etc/fstab

The/ et c/ f st ab file is just a smple text file that can be created with any editor. We will need an
entry for the root filesystem and for the proc filesystem. Information about the format of this file can be
found in the fstab(5) manpage or by looking at the/ et ¢/ f st ab file on any of the popular GNU/Linux
distributions.

/etc/mtab

The / et c/ nt ab file presents a unique challenge, because it does not contain static information like
f st ab. The nt ab file tracks mounted filesystems and therefore its contents change from time to time.
We are particularly interested in the state of m ab when the system first starts up, before any filesystems
are mounted. At this point / et ¢/ nt ab should be empty so we will need to configure a startup script to
createan empty / et ¢/ nt ab before any filesystems are mounted. But it is not possibleto create any files
inthe/ et c directory because/ isread-only at startup. This creates a paradox. We cannot create an empty
nt ab, becausethe/ filesystem isnot mounted as writable and we should not mount any filesystems until
we have created an empty nt ab. In order to sidestep this problem we need to do the following:

1. Remount / asread-write, but use the - n option so that mount does not attempt to write an entry to /
et ¢/ nt ab which isread-only at this point.

2. Create an empty / et ¢/ nt ab file now that the filesystem is writable.

3. Remount / as read-write again, thistime using the - f option so that an entry is written into / et ¢/
nt ab, but/ isnot actually mounted a second time.

Device files

The only thing left to do is to create device files. We will need / dev/ r anD, because that is where the
root filesystem is located. We also need / dev/ f dO to mount other floppy disks and / dev/ nul | for
use by some of the system commands.

Construction

Install utilities from e2fsprogs

Download the e2fsprogs source code package from http://sourceforge.net/projects/e2fsprogs/

bash# cd /usr/src/e2fsprogs-1.35

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --host=i 386-pc-I|inux-gnu
bash# make

bash# cd e2f sck

bash# cp e2fsck.shared ~/stagi ng/ shin/e2fsck
bash# I n -s e2fsck ~/stagi ng/sbhin/fsck. ext2
bash# cd ../ m sc

bash# cp fsck nke2fs ~/stagi ng/shin

bash# I n -s nke2fs ~/stagi ng/sbin/nkfs.ext2

Install utilities from util-linux

Get the latest util-linux source from ftp:/ftp.win.tue.nl/pub/linux-local/utilS/util-linux/

19

http://sourceforge.net/projects/e2fsprogs/
ftp://ftp.win.tue.nl/pub/linux-local/utils/util-linux/

Checking and Mounting Disks

bash# cd /usr/src/util-linux-2.12h

Use atext editor to make the following changes to MCONFI G

» Change "CPU=%(shell uname -m)" to "CPU=i386"

* Change"HAVE_SHADOW-=yes" to "HAVE_SHADOW=no"

bash# ./configure

bash# make

bash# cp di sk-utils/nkfs ~/staging/sbin
bash# cp fdisk/fdi sk ~/staging/sbin
bash# cp login-utils/agetty ~/staging/sbin
bash# In -s agetty ~/staging/shin/getty
bash# cp login-utils/login ~/staging/bin
bash# cp m sc-utils/kill ~/staging/bin
bash# cp mount/mount ~/stagi ng/ bin

bash# cp mount/unount ~/staging/bin
bash# cp mount/swapon ~/stagi ng/ shin
bash# cp sys-utils/dnmesg ~/staging/bin

Check library requirements

bash# |1 dd ~/staging/bin/* | nore
bash# | dd ~/stagi ng/shin/* | nore
bash# |s ~/staging/lib

All of the dependencies revealed by the Idd command are for libraries already present in the staging area
so there is no need to copy anything new.

Strip binaries to save space

bash# strip ~/staging/bin/*
bash# strip ~/staging/sbin/*

Create additional device files

bash# nmknod ~/staging/dev/iranD b 1 0
bash# nmknod ~/staging/dev/fd0 b 2 0
bash# nknod ~/staging/dev/null ¢ 1 3

Create the fstab and mtab files

bash# cd ~/staging/etc
Use an editor like vi, emacs or pico to create the following fileand saveit as~/ st agi ng/ et ¢/ f st ab.

proc / proc proc defaul ts 0O O
/dev/ranmD [/ ext 2 defaul ts 1 1

Create an empty mtab file.

bash# echo -n >mtab

20

Checking and Mounting Disks

Write a script to check and mount local filesystems

Usean editor to createthefollowing shell script and saveitas~/ st agi ng/ etc/init.d/ | ocal fs:

#!/ bi n/ sh

#

local _fs - check and nount local filesystens
#

PATH=/ sbi n: /bin ; export PATH

fsck - ATCp

if [$2 -gt 1]; then
echo "Filesystemerrors still exist! Mnual intervention required."”
/ bi n/sh

el se

echo "Remounting / as read-wite."
mount -n -0 remount,rw/
echo -n >/etc/ntab
mount -f -0 remount,rw/
echo "Mounting local filesystens."
mount -a -t nonfs, nosnbfs

fi

#

end of local fs

Set execute permissions on the script.

bash# chnod +x | ocal _fs

Create a compressed root disk image

bash# cd /

bash# dd if=/dev/zero of =/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/ranv 4096

bash# nmount /dev/ranv /mt

bash# cp -dpR ~/staging/* /mt

bash# unount /dev/ranv

bash# dd if=/dev/ranv of =~/ phase4-i mage bs=1k count =4096
bash# gzip -9 ~/ phase4-i mage

Write the root disk image to floppy

Insert the diskette labeled "root disk" into drive fdO.

bash# dd if=~/ phase4-i mage. gz of =/ dev/fd0 bs=1k

Implementation

System startup

Start the system using the following procedure:

» Boot the PC using the floppy labeled "boot disk".

21

Checking and Mounting Disks

« At the gr ub> prompt, type the usual kernel and boot commands, but without the r w parameter this
time. In other words, type kernel (fdOQ)/boot/vm inuz init=/bin/sh root=/dev/
fdO | oad_randi sk=1 pronpt _randi sk=1, press Enter thentypeboot and press Enter.

» Putinthe recently created root disk when prompted.
The output should resemble the example below:

G\NU GRUB version 0.95

grub> kernel (fd0)/boot/vm inuz init=/bin/sh root=/dev/fd0 |oad_randi sk=1 pronpt _r
[Li nux- bzl nage, setup=0xc00, size=0xce29b]

gr ub> boot
Li nux version 2.4.26
[vari ous kernel nessages]

VFS: Insert root floppy disk to be |oaded into RAM di sk and press ENTER
RAMDI SK: Compr essed i mage found at block O

VFS: Mounted root (ext2 filesystem readonly.

Freei ng unused kernel menory: 178k freed

#

Test the local_fs script

Run the script by typing the following commands at the shell prompt:

bash# PATH=/sbin:/bin:/etc/init.d ; export PATH
bash# cat /etc/ntab

bash# | ocal fs

bash# cat /etc/ntab

bash# df

If everything isworking properly, then the screen output should look something like the example below.

bash# PATH=/sbin:/bin:/etc/init.d ; export PATH
bash# cat /etc/ntab

bash# | ocal fs

/dev/ranmD: clean 74/1024 files 3178/ 4096 bl ocks
Renobunting / as read-wite.

Mounting local filesystens.

bash# cat /etc/ntab

/dev/ranmD / ext2 rw 0 O

proc /proc proc rwO0 O

bash# df
Fil esystem 1k- bl ocks Used Avail abl e Use% Mount ed on
/ dev/ ranmD 3963 3045 918 77% /

Create and mount additional filesystems

Procure a blank floppy disk and label it as "home". Remove the root disk floppy and insert the "home"
diskette. Type the following commands:

22

Checking and Mounting Disks

bash# nkfs -t ext2 /dev/fdO

bash# fsck /dev/fdO

bash# nmount /dev/fdO /hone

bash# nkdir /hone/fl oyd

bash# cd /hone/fl oyd

bash# echo "Goodbye cruel world." > goodbye. txt
bash# cat goodbye. t xt

System shutdown

bash# cd /
bash# unount /hone

Remove the diskette from fdO and restart the system using CTRL-ALT-DELETE.

23

Chapter 6. Automating Startup &
Shutdown

Analysis

Theroot disk fromthelast chapter islooking pretty good. It has about seventy percent of the commandsthat
the Filesystem Hierarchy Standard (FHS) document requiresfor the root filesystem. Plusit has commands
for checking and mounting filesystems. But even with al of thisthe root disk is far from perfect. The list
below outlines three things that could use some improvement if the Pocket Linux system is to stand up
next to the more professional looking distributions.

1. The system currently requires the kernel parametersto be typed at the gr ub> prompt in order to start
properly. On any other GNU/Linux system thisisonly donein an emergency situation when the system
is corrupted.

2. Checking and mounting the root filesystem has to be done manually by running a script at a shell
prompt. On most modern operating systems this function is handled automatically as part of the system
start-up process.

3. Using CTRL-ALT-DELETE for system shutdown is not very graceful. Filesystems should be un-
mounted and cached information should be flushed prior to shutdown. Again, this is something that
most operating systems handle automatically.

Taking the above list into consideration, the goals for this phase are defined as follows:
» Kernel loads without manual intervention.
» Automated system start-up sequence.

» Graceful shutdown capability.
Design

Determining necessary utilities

Loading the kernel without manually typing parameters is easy to do if we read the grub info page. Ac-
cording to the section entitled "configuration" al of the commands used for booting can be put in afile
caled menu. | st and placed inthe/ boot / gr ub directory.

Note

Be sure to type the menu. | st filename correctly with a lowercase L after the dot and not a
number one.

To automate system start-up we will need an init daemon. We know this because the Bootdisk-HOWTO
and From-Powerup-To-BASH-Prompt-HOWTO both make mention of init as the first program to start
after the kernel loads. The latter HOWTO also goes into some detail about the/ et ¢/ i ni tt ab fileand
the organization of startup scripts. This could be helpful since FHS, the blueprint we have used so far,
makes no recommendation for init scripts.

Wewill also heed to find the shutdown command to fulfill the second goal of graceful shutdown capability.

24

Automating Startup & Shutdown

Obtaining source code

Searching the Linux Software Map on Ibiblio for the keyword "init" gives alarge number of results. From
reading the From-Powerup-To-BASH-Prompt-HOWTO however, we know that most Linux systems use
a System V style init daemon. Narrowing the search with the additional key phrase of "System V" gives
much better results. The sysvinit package contains init, shutdown, halt and reboot which is everything
we need. The version listed in the LSM entry looks to be pretty old, but there is a primary-site URL that
will probably lead to the latest version.

Checking dependencies

The manpage for init mentionsa FIFO called / dev/ i ni t ct | that isrequired for init to communicate
with other programsin the sysvinit package. We will have to create thisfile for init to function properly.

Designing a simple GRUB configuration file.

Using a GRUB configuration file is dlightly more complex than specifying the bootloader commands
manually. There are directives for features like menus, default selections and timeouts that need to be
specified inthe configuration file aswell asthe familiar kernel loading command. Theinfo pagefor GRUB
gives much of the necessary information. We may also be able to use the GRUB configuration file on the
development system as atemplate. However, there is some inconsistency between vendors as to the name
and location of the file. Regardless of what the path is on the development system it should be / boot /
gr ub/ menu. | st on the Pocket Linux System.

Outlining start-up scripts

Many of the popular GNU/Linux distributions use System V style init scripts. Since we are using a
"sysvinit" daemon it makes senseto use System V style scriptsaswell. Thefollowing documentsall touch
upon the System V style init scripts in some way and will serve as references when building the scripts
for this project:

» The Debian Policy Manual -- available online at http://www.debian.org/doc/debian-policy.

e« The Linux Standard Base specification -- downloadable in many formats from http://
www.linuxbase.org/spec/index.shtml.

» Essential System Administration, 3rd Edition by Aeleen Frisch -- available at libraries, bookstores or
directly from O'Reilly Publishing at http://www.oreilly.com/.

After glancing at one or two of the above references we should have a pretty good idea of how the System
V style system initialization process works. We should also know what it takes to create System V style
init scripts for the Pocket Linux project. Below isabrief list of what needs to be done;

* Cregteani ni ttab filetocal anr ¢ script with anumerical argument giving the runlevel.

e Writeanr ¢ script that uses the runlevel argument to execute the appropriate "K" and "'S" scripts.

Modify the previoudly built | ocal _f s scripttotakest art and st op arguments.
 Create new scriptsfor shut down andr eboot .
* Setup/etc/rcN. ddirectoriesand linksto scriptsin/ et c/init. d.

As always, the BASH(1) manpage and the Advanced BASH Scripting Guide are very helpful for writing
and understanding shell scripts.

25

http://www.debian.org/doc/debian-policy
http://www.linuxbase.org/spec/index.shtml
http://www.linuxbase.org/spec/index.shtml
http://www.oreilly.com/

Automating Startup & Shutdown

Construction

Thereisalot of typing to do in this section because of all of the start-up scripts that need to be created.
Using amouseto copy thetext from this guide and pasteit into atext editor can be agreat time saving tool.

Create a GRUB configuration file

Insert and mount the floppy labeled "boot disk".

bash# nount /dev/fdO /mt
bash# cd /mmt/ boot/ grub

Use your favorite text editor to create the following file and save it as/mnt/boot/grub/menu.lst:

default O

ti meout 3

title Pocket Linux Boot Disk

kernel (fdO)/boot/vminuz root=/dev/fdO | oad_randi sk=1 pronpt_randi sk=1

Install sysvinit utilities

Download the latest sysvinit source from ftp://ftp.cistron.nl/pub/people/miquel s/software/

bash# cd /usr/src/sysvinit-2.85/src

bash# make CC="gcc -ntpu=i 386"

bash# cp halt init shutdown ~/staging/sbhin
bash# In -s halt ~/staging/sbin/reboot
bash# In -s init ~/staging/sbin/telinit
bash# nknod ~/staging/dev/initctl p

Note

Intheinterest of speed we are skipping the steps for checking libraries and stripping binaries. The
library requirements for sysvinit are very basic and the Makefile is configured to automatically
strip the binaries.

Create /etc/inittab file

Use atext editor to create the following fileand saveit as~/ st agi ng/ etc/inittab

letc/inittab - init daenon configuration file
#

Default runlevel

id:1l:initdefault:

#

Systeminitialization
si:S:sysinit:/etc/init.d/rc S

#

Runl evel scripts

ro:0:wait:/etc/init.d/rc O
ri:1:respawn:/bin/sh
r2:2:wait:/etc/init.d/rc
r3:3:wait:/etc/init.d/rc 3
rd:4:wait:/etc/init.d/rc 4

N

26

ftp://ftp.cistron.nl/pub/people/miquels/software/

Automating Startup & Shutdown

r5:5:wait:/etc/init.d/rc 5
ré:6:wait:/etc/init.d/rc 6
#

end of /etc/inittab

Create /etc/init.d/rc script

Use atext editor to create the following file and saveit as~/ st agi ng/ etc/init.d/rc

#!/ bi n/ sh
#
letc/init.d/rc - runlevel change script
#
PATH=/ sbi n:/bin
SCRIPT_DI R="/etc/rc$l.d"
#
Check that the rcN.d directory really exists.
if [-d $SCRIPT_DIR]; then
#
Execute the kill scripts first.
for SCRIPT in $SCRI PT_DI R/ K*; do
if [-x $SCRIPT]; then
$SCRI PT st op;
fi;
done;
#
Do the Start scripts |ast.
for SCRIPT in $SCRIPT_DI R/ S*; do
if [-x $SCRIPT]; then
$SCRI PT start;
fi;
done;
fi
#
end of /etc/init.d/rc

Make the file executable.
bash# chnod +x ~/staging/etc/init.d/rc
Modify /etc/init.d/local_fs script
A case statement is added to allow the script to either mount or unmount local filesystems depending on

the command-line argument given. The original script is contained inside the "start” portion of the case
statement. The "stop™ portion is new.

#1/bin/sh

#

local _fs - check and mount |ocal filesystens
#

PATH=/ sbi n: /bin ; export PATH

case $1 in

27

Automating Startup & Shutdown

start)
echo "Checking I oca
fsck -ATCp
if [$?2 -gt 1]; then
echo "Filesystemerrors stil
/ bin/sh
el se

echo "Remounting / as read-wite.

exi st!

mount -n -o renobunt,rw/
echo -n > /etc/ntab
mount -f -o renpunt,rw/

echo "Mounting | oca
mount -a -t
f

st op)
echo "Unmounting | oca

umount -a -r
*)
echo "usage:
esac
#
end of local fs

fil esystens.

nonf s, snbfs

fil esystens.

$0 start|stop”;

Create a hostname script

filesystemintegrity."

Manual

intervention required.”

Use atext editor to create the following script and save it as~/ st agi ng/ et c/i ni t. d/ host nane

#!/ bi n/ sh
#

hostnane - set the systemname to the nane stored in /etc/hostnane

#

PATH=/ sbi n: /bin ; export
echo "Setting hostnane."
if [-f /etc/hostname];

PATH

t hen

host nane $(cat /etc/host nane)

el se
host name gnu- i nux
f
#
end of hostnane

Create halt & reboot scripts

Use atext editor to create ~/ st agi ng/ et ¢/ i nit. d/ hal t asshown below.

#!/ bi n/ sh
#

28

Automating Startup & Shutdown

halt - halt the system
#
PATH=/ sbi n: /bin ; export PATH

echo "Initiating systemhalt."”
hal t

#

end of /etc/init.d/ halt

Create the following script and save it as~/ st agi ng/ etc/init. d/ reboot

#!/bin/sh

#

reboot - reboot the system
#

PATH=/ sbi n: /bin ; export PATH

echo "Initiating systemreboot."
r eboot

#

end of /etc/init.d/reboot

Flag all script files as executable.

bash# chnod +x ~/staging/etc/init.d/*

Create rcN.d directories and links

bash# cd ~/staging/etc

bash# nkdir rcO0.d rcl.d rc2.d rc3.d rcd4.d rc5.d rc6.d rcS. d
bash# cd ~/staging/etc/rcS.d

bash# In -s ../init.d/local _fs S20local fs
bash# In -s ../init.d/ hostnane S30host nane
bash# cd ~/staging/etc/rc0.d

bash# In -s ../init.d/local _fs Kl0local fs
bash# In -s ../init.d/ halt K90halt

bash# cd ~/staging/etc/rc6.d

bash# In -s ../init.d/local _fs Kl0local fs
bash# In -s ../init.d/ reboot K90reboot

Create the root disk image

bash# cd /

bash# dd if=/dev/zero of =/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/ranmy 4096

bash# nount /dev/ran¥ /mt

bash# cp -dpR ~/staging/* /mt

bash# unount /dev/ranv

bash# dd if=/dev/ranv of =~/ phase5-i nage bs=1k

bash# gzip -9 ~/phase5-i mage

Copy the image to diskette

Insert the diskette labeled "root disk" into drive fdO.

29

Automating Startup & Shutdown

bash# dd if=~/phase5-i mage. gz of =/ dev/fd0 bs=1k

Implementation
System Startup

Boot the PC using thefloppy labeled "boot disk". Place the recently created root disk in fd0 when prompted.
The output should resemble the example below:

GNU GRUB version 0.95
Unconpressing Linux... Ok, booting kernel.
[various kernel nessages]

VFS: Insert root floppy to be | oaded into RAM di sk and press ENTER
RAMDI SK: Conpressed i mage found at block 0

VFS: Mounted root (ext2 filesystem readonly.
Freei ng unused kernel menory: 178k freed
Checking local filesystemintegrity.

/dev/ranD: clean 105/1024 files 2842/ 4096 bl ocks
Renmobunting / as read-wite.

Mounting local filesystens.

Setting the hostnane.

INIT: Entering runlevel: 1

#

Verify success of startup scripts

Use the mount command to check that local filesystems are mounted as read-write. The output should
look like the example below.

bash# mount
/dev/root on / type ext2 (rw)
proc on /proc type proc (rw

Check the hostname.

bash# unanme -n
gnu- | i nux

System shutdown

Bring the system down gracefully with the shutdown command.
bash# shutdown -h now
We should see the following output from init and the shutdown scripts:

INIT: Switching to runlevel: O

I NI T: Sending processes the TERM si gnal
Term nat ed

I NI T: Sending processes the KILL signal

30

Automating Startup & Shutdown

Unnounting | ocal filesystens.
Initiating systemhalt.
System hal t ed.

31

Chapter 7. Enabling Multiple Users

Analysis

Up to now the system has been operating in single-user mode. Thereis no login process and anyone who
boots the system goes straight into a shell with root privileges. Obviously, thisis not the normal operating
mode for most GNU/Linux distributions. Most systems feature multi-user capability where many users
can access the system simultaneously with different privilege levels. These multi-user systems also sup-
port virtual consoles so that the keyboard and video display can be multiplexed between severa terminal
sessions. So in this phase we would like to add the following enhancements to the system:

 Enable multi-user capability.

 Create multiple, virtual consoles.

Design

The login process

The From-Powerup-To-BASH-Prompt-HOWTO does a good job of outlining the steps in the login
process. Basicaly it works like this.

1. Theinit daemon starts a getty process on the terminal.
2. The getty program displays the contents of / et ¢/ i ssue and prompts for auser name.
3. When the user name is entered, control is handed off to the login program.

4. The login program asks for a password and verifies the credentials using / et ¢/ passwd, / et ¢/
gr oup and possibly / et ¢/ shadow.

5. If everything is okay the user's shell is started.

Obtaining source code

The getty and login programs were already installed as part of the util-linux package so thereis no need
to download any new source code.

Creating support files

Device nodes
Details about virtual console device files can be found in the Linux kernel source code file called

devi ces. t xt intheDocunent at i on directory. Wewill needto createt t y1 throught t y6 for each
of the virtual consolesaswell astt y0 andt t y to represent the current virtual console.

letc/issue

The/ et c/ i ssue fileispretty easy to construct. It can contain any text we want displayed on the screen
prior to the login prompt. It could be something friendly like "Welcome to Pocket Linux", something

32

Enabling Multiple Users

menacing like "Authorized users only!" or something informational like "Connected to tty1 at 9600bps".
The agetty(8) manpage explains how to display information like tty line and baud rate using escape codes.

/etc/passwd

Theformat of / et ¢/ passwd can be obtained by reading the passwd(5) manpage. We can easily create
auser account by adding aline like "root::0:0:superuser:/root:/bin/sh" to thefile.

Maintaining passwords will be somewhat challenging because of the system being loaded into ramdisk.
Any changesto/ et ¢/ passwd will be lost when the system is shutdown. So to make things easy, we
will create all userswith null passwords.

/etc/group

The structure of / et ¢/ gr oup is available from the group(5) manpage. A line of "root::0:root" would
define a group called "root" with no password, a group id of zero and the user root assigned to it as the
only member.

Conventions

User and group names and id's are generally not chosen at random. Most Linux systems have very similar
looking / et ¢/ passwd and / et ¢/ gr oup files. Definitions for commonly used user id and group id
assignments may be found in one of several places:

» The/ et c/ passwd and/ et c/ gr oup fileson any popular GNU/Linux distribution.
» The Debian Policy Manual -- available online at http://www.debian.org/doc/debian-policy.

e The Linux Standard Base specification -- downloadable in many formats from http://
www.linuxbase.org/spec/index.shtml.

e Essential System Administration, 3rd Edition by Aeleen Frisch -- available at libraries, bookstores or
directly from O'Reilly Publishing at http://www.oreilly.com/.

Dependencies

Running Idd on the | ogi n program from util-linux will revea that it is linked to the libraries
libcrypt.so.1,libc.so.6andld-Iinux.so.2.Inaddition to these libraries there is another,
unseen dependency onl i bnss_fi | es. so. 2 and the configuration file/ et ¢/ nsswi t ch. conf .

The name service switch library | i bnss _fil es.so.2 and nsswi tch. conf are required for
I'i bc. so. 6, and consequently the | ogi n program, to accessthe/ et ¢/ passwd file. Without libnss
and its configuration file, all logins will mysteriously fail. More information about glibc's use of the name
service switch libraries can be found at http://www.gnu.org/software/libc/manual/html_node/Name-Ser-
vice-Switch.html.

Assigning ownership and permissions

Previously, with the single user system, there was no need to worry about permissions when installing di-
rectories, files and device nodes. The shell was effectively operating asroot, so everything was accessible.
Things become more complex with the addition of multiple user capability. Now we need to make sure
that every user has access to what they need and at the same time gets blocked from what they do not need.

A good guideline for assigning ownership and permissions would be to give the minimum level of access
required. Takethe/ bi n directory asan example. The Filesystem Hierarchy (FHS) document says, "/ bi n

33

http://www.debian.org/doc/debian-policy
http://www.linuxbase.org/spec/index.shtml
http://www.linuxbase.org/spec/index.shtml
http://www.oreilly.com/
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html

Enabling Multiple Users

contains commands that may be used by both the system administrator and by users'. From that statement
we can infer that / bi n should have read and execute permission for everyone. On the other hand, the
/ boot directory contains files for the boot loader. Chances are good that regular users will not need to
access anything in the / boot directory. So the minimum level of access would be read permission for
the root user and other administrators who are members of the root group. Normal users would have no
permissions assigned on the/ boot directory.

Most of the time we can assign similar permissions to all the commands in a directory, but there are some
programs that prove to be exceptions to the rule. The su command is a good example. Other commands
in the /bin directory have a minimum requirement of read and execute, but the su command needs to be
setuid root in order to run correctly. Since it is a setuid binary, it might not be a good idea to allow just
anyoneto runit. Ownership of 0:0 (root user, root group) and permissions of rwsr-x--- (octal 4750) would
be agood fit for su.

The samelogic can be applied to other directories and filesin the root filesystem using the following steps:
1. Assign ownership to the root user and root group.
2. Set the most restrictive permissions possible.

3. Adjust ownership and permissions on an "as needed" basis.

Construction

Verify presence of getty and login

bash# | s ~/staging/sbin/getty
bash# |'s ~/staging/bin/login

Modify inittab for multi-user mode

Modify ~/ st agi ng/ et ¢/ i ni t t ab by changing thedefault runlevel and adding getty entriesasshown
below.

/etc/inittab - init daenon configuration file
#

Defaul t runl evel

id:2:initdefaul t:

#

Systeminitialization
si:S:sysinit:/etc/init.d/rc S

#

Runl evel scripts

ro:0:wait:/etc/init.d/rc O
ri:1:respawn:/ bin/sh
r2:2:wait:/etc/init.d/rc 2
r3:3:wait:/etc/init.d/rc 3
rda:4:wait:/etc/init.d/rc 4
r5:5:wait:/etc/init.d/rc 5
ré:6:wait:/etc/init.d/rc 6
#

Spawn virtual termnals
1: 235: respawn:/sbin/getty 38400 ttyl |inux

34

Enabling Multiple Users

:235:respawn: / shin/getty 38400 tty2 |inux
:235:respawn: / shin/getty 38400 tty3 |inux
235:respawn: / shin/getty 38400 tty4 |i nux
235:respawn: / shin/getty 38400 tty5 |i nux
:2345: respawn: / shin/getty 38400 tty6 |i nux

HEHOTAWN

end of /etc/inittab

Create tty devices

bash# cd ~/ st agi ng/ dev

bash# nknod ~/stagi ng/dev/tty0
bash# nknod ~/staging/dev/ttyl
bash# nknod ~/staging/dev/tty2
bash# nknod ~/staging/dev/tty3
bash# nknod ~/stagi ng/dev/tty4
bash# nknod ~/staging/dev/tty5
bash# nknod ~/staging/dev/tty6
bash# nknod ~/staging/dev/tty ¢ 50

O0O0O000O0
AR DMD
O WNEO

Create support files in /etc

letclissue
Createthefile~/ st agi ng/ et ¢/ i ssue using the example below or design a customized message.
Connected to \l at \b bps.

Be surethat "\I" isalowercase letter L and not the number one.

/etc/passwd

Useatext editor to create aminimal passwd file conforming to the Linux Standards Base (L SB) document.
Savethefileas~/ st agi ng/ et ¢/ passwd

root::0:0: Super User:/root:/bin/sh

bi n: x: 1: 1: Legacy U D:/bin:/bin/false
daenon: x: 2: 2: Legacy Ul D:/sbin:/bin/fal se

/etc/group
Use atext editor to create an LSB conforming group file and saveit as~/ st agi ng/ et ¢/ gr oup
root::0:root

bi n: x: 1: root, bi n, daenon
daenon: x: 2: r oot , bi n, daenon

/etc/nsswitch.conf
Create the following file and saveit as~/ st agi ng/ et ¢/ nsswi t ch. conf

passwd: files
group: files

35

Enabling Multiple Users

Copy required libraries

bash# cp /lib/libnss _files.so.2 ~/staging/lib
bash# strip --strip-unneeded ~/staging/lib/*

Set directory and file permissions

Set minimal privileges on all files and directories under ~/ st agi ng. Everything is owned by the root
user and the root group. Permissions are read-write for the owner and read-only for the group. Exceptions
to the blanket permissions are handled case by case.

bash# cd ~/staging
bash# chown -R 0: 0 ~/staging/*
bash# chnod -R 640 ~/staging/*

Set execute permission on al directories. (Note the capital "X")
bash# chnod -R +X ~/ st agi ng/*
Filesin/ bi n areread and execute for all, but su is an exception.

bash# chnmod 755 ~/stagi ng/ bin/*
bash# chnmod 4750 ~/stagi ng/ bin/su

Filesin/ dev have various permissions. Disk devices should be accessible to administrators only. Other
fileslike/ dev/ nul | should have full privileges granted to everyone.

bash# chnod 660 ~/stagi ng/ dev/fd0 dev/ranD
bash# chnod 666 ~/stagi ng/ dev/ nul

bash# chnod 622 ~/stagi ng/ dev/consol e
bash# chnmod 600 ~/staging/dev/initctl
bash# chnod 622 ~/staging/dev/tty

bash# chnod 622 ~/stagi ng/dev/tty?

Thepasswd and gr oup files must be world readable.

bash# chnod 644 ~/stagi ng/ etc/ passwd
bash# chnod 644 ~/stagi ng/etc/group

Thescriptsin/ et ¢/ i ni t. d areread and execute for administrators.
bash# chnod 750 ~/staging/etc/init.d/*

Libraries need read and execute permissions for everyone.

bash# chnmod 755 ~/staging/lib/*

Only root should have accesstothe/ r oot directory.

bash# chnod 700 ~/stagi ng/r oot

Makefilesin/ sbi n read and execute for administrators.

bash# chnod 750 ~/stagi ng/sbin/*

Temp should be read-write for all with the sticky bit set.

36

Enabling Multiple Users

bash# chnod 1777 ~/staging/tnp

Create the root disk image

bash# cd /

bash# dd if=/dev/zero of =/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/ranmy 4096

bash# nmount /dev/ran¥ /mt

bash# cp -dpR ~/staging/* /mt

bash# unount /dev/ranv

bash# dd if=/dev/ranv of =~/ phase6-i mage bs=1k count =4096
bash# gzip -9 ~/phase6-i mage

Copy the image to diskette

Insert the diskette labeled "root disk" into drive fdO.

bash# dd if=~/phase6-i mage. gz of =/ dev/fd0 bs=1k

Implementation
System Startup

If everything goes well, the virtual console display should look similar to the following example:

Connected to ttyl at 38400 bps.
gnu-l i nux | ogin:

Add a new user to the system

Login asroot.

Create a new, unprivileged user and new group by appending alineto the/ et ¢/ passwd and / et c/
gr oup files, respectively. Be sure to use a double greater-than (>>) to avoid accidentally overwriting
thefiles.

bash# echo "fl oyd: :501: 500: User:/ home/ fl oyd: / bi n/ sh" >>/etc/passwd
bash# echo "users::500:" >>/etc/group

bash# nkdir /hone/fl oyd

bash# chown fl oyd. users /home/fl oyd

bash# chnod 700 /home/fl oyd

Test the new user's ability to use the system

Switch to virtual terminal tty2 by pressing AL T+F2.
Loginasfloyd.
Try the following commands and verify that they work.

bash$ pwd
bash$ Is -1 /

37

Enabling Multiple Users

bash$ cat /etc/passwd
Try the following commands and verify that they do not work.

bash$ I's /root
bash$ /sbi n/ shut down -h now
bash$ su -

System shutdown

Switch back to ttyl where root islogged in.

bash# shutdown -h now

38

Chapter 8. Filling in the Gaps

Analysis

The root disk has come along way since its humble beginnings as a statically-linked shell. It now shares
many features with the popular, ready-made distributions. For example it has:

» Several common utilities like cat, Is and so on.

* Startup scripts that automatically check and mount filesystems.
» Graceful shutdown capability.

* Support for multiple users and virtual terminals.

Asafinal test, we can put the root disk up against the Filesystem Hierarchy Standard (FHS) requirements
for the root filesystem. (We will ignore anything in the / usr hierarchy because of space constraints.)
Compared to FHS requirement, the only files missing are afew commandsin the/ bi n directory. Specif-
ically, the root disk lacks the following commands:

e more
. ps
* sed

In addition to the required commands, it might be nice to include the "ed" editor listed as an option by the
FHS. It isnot as robust as vi or emacs, but it works and it should fit onto the tiny root filesystem.

So in order to finish up this phase of the project, we need to accomplish the following goals:
» Addthe more, psand sed commands.

* Install the optional ed editor.
Design

more

There is a more command that comes with util-linux, but it will not work for this project. The reason
is because of library dependencies and space constraints. The util-linux supplied mor e needs either the
libncurses or libtermcap to work and there just is not enough space on the root disk floppy to fit everything
in. So, in order to have a mor e command we will have to get creative.

The more command is used to display a file page by page. It's alittle like having a cat command that
pauses every twenty-five lines. The basic logic is outlined below.

* Read oneline of thefile.
 Display the line on the screen.
« If 25 lines have been displayed, pause.

e Loopanddoitagain.

39

Filling in the Gaps

Of coursethereare somedetailsleft out likewhat to doif the screen dimensionsare not what we anticipated,
but overal it is afair representation of what mor e does. Given this simple program logic, it should not
be hard to put together a short shell script that emulates the basic functionality of more. The BASH(1)
manpage and Adv-BA SH-Scripting-Guide will serve as references.

More device files

The more script will need access to device filesthat are not on the root disk yet. Specifically mor e needs
to have st di n, st dout and st der r, but while we are at it we should check for any other missing /
dev files. The Linux Standard Base requiresnul | , zer o and t t y to be present in the/ dev directory.
Filesfornul | andtty already exist from previous phases of the project, but we still need/ dev/ zer o.
We can refer to devi ces. t xt in the Linux source code Docunent at i on directory for major and
minor numbers.

ps, sed & ed

These three packages can be found by using the Internet resources we have used before plus one new site.
The "sed" and "ed" packages can be found at the same place we found BASH, on the GNU FTP server
[ftp://ftp.gnu.org]. The procps package shows up in an Ibiblio LSM search, but it is an old version. In
order to find the latest version we can go to the Freshmeat website at http://freshmeat.net and search for
"procps’ in projects.

Both "sed" and "ed" packagesfeature GNU'sfamiliar configur e script and are therefore very easy to build.
Thereis no configure script for "procps’ but this does not make things too difficult. We can just read the
package's README fileto find out about how to set various configuration options. We can use one of these
options to avoid the complexity of using and installing libproc. Setting SHARED=0 makes| i bpr oc an
integrated part of psrather than a separate, shared library.

Construction

Write a "more" script

Create the following script with atext editor and save it as~/ st agi ng/ bi n/ nore. sh

#!/bin/sh

#

more.sh - enulates the basic functions of the "nmore" binary without
requiring ncurses or terncap libraries.

#

Assume input is coming fromSTDIN unless a valid file is given as
a command-1ine argunent.
if [-f $1]; then
I NPUT="$1"
el se
| NPUT="/ dev/ st di n"
fi

#

Set IFS to newine only. See BASH(1l) nanpage for details on IFS.
| FS=$'\n'

#

If term nal dinensions are not already set as shell variables, take
a guess of 80x25.

40

ftp://ftp.gnu.org
ftp://ftp.gnu.org
http://freshmeat.net

Filling in the Gaps

if ["$SCOLUMNS' = ""]; then
| et COLUWNS=80;

fi

if ["SLINES" = ""]; then
l et LI NES=25;

f
#
Initialize line counter vari able

message on STDERR and wait
the end of the input file.

[et LI NE_COUNTER=$LI NES

#

Read the input file one line at a time and di splay on STDOUT unti

the page fills up. Display "Press <Enter>"

for keypress from STDERR. Conti nue until

Any input line greater than $COLUWNS characters in length is w apped
and counts as nultiple lines.

#

while read -n $COLUWNS LI NE_BUFFER; do

echo "$LI NE_BUFFER"
| et LI NE_COUNTER=$LI NE_COUNTER- 1
if [SLINE_COUNTER -le 1]; then
echo "Press <ENTER> for next
read</ dev/ stderr
| et LI NE_COUNTER=$LI NES
f
done<$l NPUT
#
end of nore.sh

Create asymbolic link for nor e

bash# In -s nore.sh ~/staging/bin/nore

Create additional device files

bash# In -s
bash# In -s

/proc/sel f/fd ~/stagi ng/ dev/fd
fd/ 0 ~/staging/dev/stdin

page or <CTRL>+C to quit.">/dev/stderr

bash# In -s
bash# In -s
bash# nknod

Install ps

fd/ 1 ~/stagi ng/ dev/ st dout
fd/ 2 ~/stagi ng/ dev/stderr
-nmb644 ~/ staging/dev/zero c 1 5

Get the latest procps source package from http://procps.sourceforge.net/

bash#
bash#
bash#
bash#

cd ps
cp ps

Install sed

cd /usr/src/procps-3.2.3
make SHARED=0 CC="gcc -ntpu=i 386"

~/ st agi ng/ bin

Download GNU's sed from ftp://ftp.gnu.org/gnu/sed/

bash# cd /usr/src/sed-4.1.2

41

http://procps.sourceforge.net/
ftp://ftp.gnu.org/gnu/sed/

Filling in the Gaps

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --host=i386-pc-I|inux-gnu
bash# make

bash# cd sed

bash# cp sed ~/staging/bin

Install ed

The ed package also comes from GNU at ftp://ftp.gnu.org/gnu/ed/

bash# cd /usr/src/ed-0.2

bash# ./configure --host=i 386-pc-Iinux-gnu
bash# make

bash# cp ed ~/stagi ng/bin

Strip binaries to save space

bash# strip ~/staging/bin/*

Ensure proper permissions
bash# chown 0:0 ~/staging/bin/*

bash# chnod -R 755 ~/stagi ng/ bin
bash# chnmod 4750 ~/stagi ng/ bin/su

Create the root disk image
bash# cd /
bash# dd if=/dev/zero of=/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/rany 4096
bash# nmount /dev/ran¥ /mt
bash# cp -dpR ~/staging/* /mt
bash# unmount /dev/ranv

bash# dd if=/dev/ran¥ of =~/ phase7-i mage bs=1k
bash# gzip -9 ~/ phase7-i nage

Copy the image to diskette

Insert the diskette labeled "root disk" into drive fdO.

bash# dd if=~/phase7-i mage. gz of =/ dev/fd0 bs=1k

Implementation

System startup

Boot from the diskset in the usual way and log in as root.

Test the "more" script

Display kernel messages by piping the output of dmesg to more.

42

ftp://ftp.gnu.org/gnu/ed/

Filling in the Gaps

bash# dnmesg | nore
Examinethel ocal _f s script by using more with a command-line argument.

bash# nmore /etc/init.d/local _fs

Use ps to show running processes

Display processes for the user currently logged in.
bash# ps
Display al available information about all running processes.

bash# ps -ef

Run a simple sed script

Use sed to display an alternate version of / et ¢/ passwd.
bash# sed -e "s/Legacy/d d School/" /etc/passwd
Verify that sed did not make the changes permanent.

bash# cat /etc/passwd

Test the "ed" editor

Use ed to change properties on the "daemon” user.

bash# ed -p*

ed* r /etc/passwd

ed* %

ed* /daenon/s/Legacy/ A d School/
ed* %

ed* w

ed* ¢

Verify that the changes are permanent (at least until the system is restarted.)

bash# cat /etc/passwd

System shutdown

Bring the system down gracefully with the shutdown command.

43

Chapter 9. Project Wrap Up

Celebrating Accomplishments

Asthe Pocket Linux Project draws to a close we should take amoment to celebrate all of our accomplish-
ments. Some of the highlights are listed below:

We have built a system, from source code only, that fully implements all of the commands described in
the Filesystem Hierarchy Standard requirements for aroot filesystem.

We have learned how to use Internet resources to locate and download the source code needed to build
aGNU/Linux system.

We have written basic system startup and shutdown scripts and configured them to executein the proper
runlevels.

We haveincluded support for multipleuserson virtual consolesand implemented permissionson system
files.

But most importantly, we have learned some good design techniques and project management skills
that will enable usto tackle any future projects with ease and confidence.

Planning Next Steps

The Pocket Linux system is nearly overflowing, so there really is no more room to expand the current
root diskette to support any additional commands and features. Thisleaves us with afew choices of where
to go next. We can:

Find away to expand the current system just enough to host a small application. (For more information
about hosting applications with Pocket Linux, see Appendix A)

Remove multi-user capability and some of the less often used commands from the root disk, replacing
them with utilities like tar and gzip that would be useful for arescue/restore diskset.

Use the techniques we have learned to design and build an entire GNU/Linux system and install it on a
more spacious hard disk partition. (For more infomation about building alarger system, check out the
GNU/Linux System Architect Toolkit at: http://architect.sourceforge.net/.)

Which ever path is chosen, we can move forward confidently, armed with the knowledge we need to be
successful in our endeavors.

http://architect.sourceforge.net/

Appendix A. Hosting Applications
Analysis

An operating system by itself is not much fun. What makes an OS great is the applications that can be
run on top of it. Unfortunately, Pocket Linux currently does not have much room for anything other than
system programs. Still, it would be nice to expand the system just enough to host some cool applications.
Obviously afull-blown X-Windows GUI isout of the question, but running asmall console based program
should be within our reach.

Rather than doing atypical "hello world" program as an example, application hosting will be demonstrated
using aconsol e based audio player called mp3blaster. Building mp3blaster offers more technical challenge
than "hello world" and the finished product should be alot more fun. However, it should not be construed
that a console-based jukebox is the only application for Pocket Linux. On the contrary, after completing
this phase the reader should have the knowledge and tools to build almost any console-based program he
or she desires.

So what will it take to turn a pocket-sized GNU/Linux system into a pocket-sized mp3 player? A few
things are listed below.

» Add support for audio hardware.
* Create space for the mp3blaster program.

 Provide a convenient way to access audio files.
Design

Support for audio hardware

Thereisavast proliferation of audio hardware on the market and each sound card has its own particular
configuration. For details on how to set up a particular sound card we can turn to the Sound-HOWTO
available from The Linux Documentation Project [http://www.tldp.org]. In a broader sense, however, we
can treat asound card like any other piece of new hardware. To add new hardwareto aGNU/Linux system
we will need configure the kernel to recognize it and configure/ dev files on the root disk to accessit.

Kernel support for audio

In order to support sound cards, anew kernel will haveto be built. It isvery important that audio hardware
support be configured as built-in, because Pocket Linux is not set up to handle kernel modules.

Root disk support for audio

Searchingdevi ces. t xt forthekeyword "sound" will list quite afew possibleaudio devices, but usually
only / dev/ dsp and / dev/ mi xer are required to get sound from a PC. These two files control the
digital audio output and mixer controls, respectively.

Creating space for the program

Probably the easiest way to create more space for the mp3blaster program isto mount an additional storage
device. There are severa choices for mount points. So far / usr,/ hone and/ opt areall empty direc-
tories and any one of them could be used to mount afloppy, CD-ROM or additional compressed ramdisk
image. The/ usr directory isalogical choice for aplace to put an application, but what about the choice

45

http://www.tldp.org
http://www.tldp.org

Hosting Applications

of media? Mp3blaster and its required libraries are too big to fit on a 1.44M floppy and burning a CD-
ROM seems like a lot of work for one little program. So given these constraints, the best choice would
be to put the program on a compressed floppy.

Mounting additional compressed floppies

Mounting CDsand uncompressed di skettesiseasy, but what about | oading compressed imagesfrom floppy
into ramdisk? It will have to be done manually, because automatic mounting of compressed floppies only
worksfor the root diskette. And using mount /dev/fd0 will not work because there is no filesystem on the
diskette, there are only the contents of a gzip file. The actual filesystem is contained inside the gzip file.
So how can we mount the filesystem buried beneath the gzip file? This puzzle can be solved by examining
at the steps used to create the familiar compressed root disk floppy.

1. A ramdisk is created, mounted and filled with files.

2. Theramdisk device is unmounted.

3. The contents of the ramdisk are dumped to an image file using dd.
4. Theimage file is compressed with gzip.

5. The compressed image file is written to floppy with dd.

If that is how the compressed image makes its way from ramdisk to compressed floppy, then going from
compressed floppy to ramdisk should be as simple as running through the stepsin reverse.

1. The compressed image fileisread from floppy with dd.

2. Theimage fileis uncompressed with gunzip.

3. The contents of the image file are dumped into ramdisk using dd.
4. Theramdisk deviceis mounted.

5. Thefilesare available.

We can cut out the intermediate image file by using a pipe to combine dd and gunzip like this: dd if=/
dev/fd0 | gunzip -cq > /dev/ram1. Now the compressed floppy goes straight into ramdisk, decompressing
on thefly.

Root disk support for additional ramdisks

We aready have kernel support for ramdisks, because we are using a compressed root disk, but we will
need to create more ramdisks in / dev. Typically the kernel supports eight ramdisks on / dev/ r anD
through / dev/ r anv with r anD being used for the rootdisk. The devi ces. t xt fileincluded in the
Linux source code documentation will be helpful for matching devicesto their major and minor numbers.

Accessing audio files

The sample mp3filethat wewill be using in our exampleissmall enough to fit on an uncompressed floppy
disk so that thereis no need to burn a CD. However, serious music lovers may want to have the capability
to mount a custom CD-ROM full of tunes and that option will require support for additional hardware.

CD-ROM hardware support

Most modern CD-ROM drives will use IDE devices like / dev/ hdc or / dev/ hdd. To support these
CD-ROM drives we will have to configure IDE support in the kernel and create the appropriate device
files on the root disk.

46

Hosting Applications

CD-ROM filesystem support

CD-ROMs have different filesystems than hard disks and floppies. Most CD burning applications use a
filesystem called 1SO-9660 and have the capability to support Joliet or Rockridge extensions. We will
have to include support for these filesystems in the kernel in order to mount CD-ROMSs.

Other required files

We will want to have all of mp3blaster's required libraries and other supporting files available as part of
the compressed / usr image so that mp3blaster can run correctly. The familiar ldd command can be used
to determine which libraries mp3blaster requires. Any additional libraries can be placed in/ usr/ i b.
Even though some of the libraries may appear in/ | i b on the development system, they can still go in
[usr /i b onthe Pocket Linux system. The dynamic linker, | d- | i nux. so, is smart enough to look
in both places when loading libraries.

Because mp3blaster uses the curses (or ncurses) screen control library thereis one additional file we need.
The curseslibrary needsto know the characteristics of theterminal itiscontrolling and it getsthat informa-
tion from the terminfo database. The terminfo database consists of al the filesunder the/ usr/ shar e/
t er m nf o directory and isvery large compared to our available disk space. But, since Pocket Linux only
supports the PC console, we only have one terminal type to worry about and therefore need only onefile.
The piece of the terminfo database we need isthefile/ usr/ share/term nfo/l /i nux, because
weareusing a"Linux" terminal. For more information about the subject of curses, see John Strang's book
entitled "Programming with Curses" available from O'Reilly publishing [http://www.oreilly.com].

Summary of tasks

Between sound cards, ramdisks, CD-ROMs and terminfo thereis quite a bit to keep track of. So let's take
amoment to organize and summarize the tasks necessary to make the pocket jukebox areality.

 Create anew kernel disk that includes built-in support for audio hardware, IDE devices and CD-ROM
filesystems.

* Create the appropriate / dev files on the root disk to support audio hardware, additional ramdisks and
IDE CD-ROMs.

* Install the gunzip utility to enable decompression of the usr image.

 Create a startup script to load a compressed image from floppy into a ramdisk and mount the ramdisk
on/ usr.

» Create acompressed floppy that holds the mp3blaster program, its required libraries and terminfo files.

Construction

Create an enhanced boot disk

Build a new kernel

bash# cd /usr/src/linux
bash# nmake nmenuconfig

Be sure to configure support for the following:

47

http://www.oreilly.com
http://www.oreilly.com

Hosting Applications

» 386 processor

* Floppy disk

* RAM disk

» Second extended (ext2) filesystem
* Virtua console

* Audio hardware

* CD-ROM hardware

» 1S0-9660 and Joliet filesystems

bash# nmake dep
bash# nmake cl ean
bash# nmake bzl nage

Copy the kernel to diskette

Place the boot disk in drive fdO

bash# mount /dev/fdO /mt
bash# cp /usr/src/linux/arch/i 386/ boot/bzlmge /mt/boot/vninuz

Unmount the boot disk

bash# cd /
bash# unount /mt

Create an enhanced root disk

Create additional device files
IDE CD-ROM

bash# nknod -n640 ~/stagi ng/dev/hdc b 22 0
bash# nknod -n640 ~/stagi ng/ dev/ hdd b 22 64

Optionally create additional IDE devices.
Ramdisk

bash# nmknod -m 640 ~/stagi ng/ dev/raml
bash# nmknod -m 640 ~/stagi ng/ dev/ran®
bash# nmknod -m 640 ~/stagi ng/ dev/ran8
bash# nmknod -m 640 ~/stagi ng/ dev/rami
bash# nmknod -m 640 ~/stagi ng/ dev/ranb
bash# nmknod -m 640 ~/stagi ng/ dev/ranb
bash# nmknod -m 640 ~/stagi ng/ dev/ranv

olieliodiofiofiogiog
PR RPRRRRERE
NO UM WNRE

Audio

bash# nknod -n664 ~/stagi ng/dev/dsp ¢ 14 3

48

Hosting Applications

bash# nmknod -n664 ~/stagi ng/dev/m xer ¢ 14 0

Install the gunzip binary

bash# cd /usr/src/gzip-1.2.4a

bash# export CC="gcc -ntpu=i 386"

bash# ./configure --host=i 386-pc-I|inux-gnu
bash# make

bash# strip gzip

bash# cp gzip ~/staging/bin

bash# In -s gzip ~/staging/bin/gunzip

Don't forget to verify library requirements, check the ownership and check permissions on the gzip binary.
Write a startup script to mount a compressed floppy

Use atext editor to create the following script and saveitas~/ st agi ng/ et c/i ni t. d/ usr_i nage

#! / bi n/ sh

#

usr_image - | oad conpressed i mages from fl oppy into randi sk and

nount on /usr.

#

echo -n "Is there a conpressed diskette to load for /usr [y/NJ? "

read REPLY

if ["SREPLY" = "y"] || ["$REPLY" = "Y"]; then
echo -n "Please insert the /usr floppy into fdO and press <ENTER>."
read REPLY

echo "Clearing /dev/rantl."
dd if=/dev/zero of =/dev/raml bs=1k count =4096
echo "Loadi ng conpressed i mage from/dev/fdO into /dev/raml..."
(dd if=/dev/fd0 bs=1k | gunzip -cq) >/dev/ranl 2>/dev/nul
fsck -fp /dev/ranl
if [$2 -gt 1]; then
echo "Filesystemerrors on /dev/raml! Manual intervention required.”
el se
echo "Mounting /usr."
nount /dev/raml /usr
f
f
#
end of usr_inmage

Configure the script to run right after root is mounted.

bash# In -s ../init.d/ usr_imge ~/staging/etc/rcS. d/ S21usr_i mage

Create a compressed root disk

bash# cd /

bash# dd if=/dev/zero of =/dev/ranv bs=1k count =4096
bash# nke2fs -nD /dev/ranv

bash# nmount /dev/ranv /mt

bash# cp -dpR ~/staging/* /mt

49

Hosting Applications

bash# unmount /dev/ranv
bash# dd if=/dev/ranv of =~/ phase8-i mage bs=1k
bash# gzip -9 ~/phase8-i mage

Insert the diskette labeled "root disk" into drive fdO.

bash# dd i f=~/ phase8-i mage. gz of =/ dev/fd0 bs=1k

Create a compressed /usr disk for mp3blaster

The compressed /usr diskette will be created in using the same processthat is used to create the compressed
root disk. We will copy files to a staging area, copy the staging area to ramdisk, compress the ramdisk
and write it to diskette.

Create a staging area

bash# nkdir ~/usr-staging
bash# cd ~/usr-staging

bash# nkdir bin lib

bash# nkdir -p share/termninfo/l

Install the mp3blaster program

Download the latest version of mp3blaster source code from its home at http://www.stack.nl/~bra-
ma/mp3blaster/.

bash# cd ~/usr/src/nmp3blaster-3.2.0

bash# ./configure

bash# make

bash# cp src/ np3bl aster ~/usr-staging/bin

Copy additional libraries and terminfo

Use Idd to find out which libraries are needed for mp3blaster.

Note

The following is an example from the author's devel opment system. It is possible that different
systems may yield dightly different resultsin terms of library requirements.

bash# cd ~/usr-staging/lib

bash# | dd ~/usr-stagi ng/ bi n/ np3bl ast er
bash# cp /usr/lib/ncurses.so.5.0

bash# cp /usr/lib/stdc++.s0.3

bash# cp /lib/libmso.6

bash# cp /usr/lib/libgcc_s.so.1

bash# cd ~/usr-staging/share/termnfo/l
bash# cp /usr/share/term nfo/l/linux .

Make a compressed image and copy it to diskette

bash# cd /
bash# dd if=/dev/zero of =/dev/rany bs=1k count =4096
bash# nke2fs -nD /dev/ran¥

50

http://www.stack.nl/~brama/mp3blaster/
http://www.stack.nl/~brama/mp3blaster/

Hosting Applications

bash# mount /dev/ranv /mt

bash# cp -dpR ~/usr-stagi ng/* /mt

bash# unmount /dev/ranv

bash# dd if=/dev/ran/ of =~/ np3bl ast er-i nage bs=1k
bash# gzip -9 ~/ mp3bl aster-i nage

Insert the diskette labeled "mp3blaster" into drive fdo.

bash# dd if=~/np3bl aster-image. gz of =/ dev/fd0 bs=1k

Create a data diskette for testing

Go to the Internet site http://www.paul .sladen.org and downl oad the mp3 file of Linus Torval ds pronounc-
ing "Linux." Thedirect link is: http://www.paul .sladen.org/pronunciation/torval ds-says-linux.mp3. Create
a Second Extended (ext2) filesystem on a floppy and copy the mp3 file onto the diskette.

Implementation
System Startup

1. Boot from the kernel diskette.
2. Insert the root floppy when prompted.
3. When prompted for a/usr diskette, say 'Y".

4. Insert the mp3blaster diskette and press Enter.

Verify that the /usr diskette loaded properly

bash# nount
bash# |s -1 R /usr

Check the audio device initialization

bash# dnmesg | nore

If everything worked there should be a line or two indicating that the kernel found the audio hardware.
The example below shows how the kernel might report a'Y amaha integrated sound system.

ynfpci: YMF740C at Oxf4000000 | RQ 10
ac97_codec: AC97 Audio codec, id: 0x4144:0x5303 (Anal og Devi ces AD1819)

Test audio output

bash# echo " Garbage" > /dev/dsp

A short burst of static coming from the PC speakers indicates that sound is working.

Play a sample file

Insert the diskette containing the sample audio file.

51

http://www.paul.sladen.org
http://www.paul.sladen.org/pronunciation/torvalds-says-linux.mp3

Hosting Applications

nmount /dev/fdO /home
bash# /usr/bi n/ np3bl ast er

Use mp3blaster to select and play the file/ hone/ t or val ds- says- | i nux. np3. Use mp3blaster's
mixer controls to adjust the volume as needed.

System shutdown

Bring the system down gracefully with the shutdown command.

52

Appendix B. GNU Free Documentation
License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyoneis permitted to copy and distribute verba-
tim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this Licenseisto make amanual, textbook, or other functional and useful document "free"
inthe sense of freedom: to assure everyonethe effective freedom to copy and redistributeit, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher away to get credit for their work, while not being considered responsible for modifications
made by others.

ThisLicenseisakind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this Licenseis not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose isinstruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants aworld-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". Y ou accept the license if you copy, modify or distribute the work in away requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or trand ated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document isin part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections' are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

53

GNU Free Documentation License

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readersis not Transparent. Animage format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, X CF and JPG. Opagque formats include proprietary formats that can be read and edit-
ed only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in thetitle page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whosetitle either is precisely XYZ or
contains XY Z in parenthesesfollowing text that translates XY Z in another language. (Here XY Z standsfor
a specific section name mentioned below, such as"Acknowledgements®, "Dedications’, "Endorsements”,
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which statesthat this License applies
to the Document. These Warranty Disclaimers are considered to be included by referencein this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have isvoid and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License appliesto the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute alarge enough number of copies you must aso follow the conditionsin section 3.

Y ou may aso lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the
copiesin coversthat carry, clearly and legibly, all these Cover Texts. Front-Cover Textson thefront cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the

54

GNU Free Documentation License

publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. Y ou may add other material on the coversin addition. Copying with changeslimited
to the covers, aslong asthey preserve thetitle of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either in-
clude amachine-readable Transparent copy aong with each Opague copy, or state in or with each Opague
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opague copiesin quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them achanceto provide you with an updated version of the Document.

MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) atitle distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List ontheTitle Page, asauthors, one or more persons or entities responsible for authorship of the mod-
ificationsin the Modified Version, together with at least five of the principal authors of the Document
(al of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

H. Include an unaltered copy of this License.

I. Preservethe section Entitled "History", Preserveits Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

55

GNU Free Documentation License

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. Y ou may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled " Acknowledgements" or "Dedications’, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/
or dedications given therein.

L. Preserve dl the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M.Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified Ver-
sion.

N. Do not retitle any existing section to be Entitled "Endorsements’ or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version'slicense notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements’, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms de-
fined in section 4 above for modified versions, provided that you include in the combination al of the
Invariant Sections of al of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but dif-
ferent contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else aunique number. Make the same
adjustment to the section titlesin thelist of Invariant Sectionsin the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled " Acknowledgements", and
any sections Entitled "Dedications”. Y ou must delete all sections Entitled "Endorsements”.

56

GNU Free Documentation License

COLLECTIONS OF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents rel eased under this License,
and replacetheindividual copiesof thisLicenseinthevariousdocumentswith asingle copy that isincluded
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documentsin all other respects.

Y ou may extract asingle document from such acollection, and distributeit individually under thisLicense,
provided you insert a copy of thisLicenseinto the extracted document, and follow thisLicensein al other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or itsderivativeswith other separate and independent documents or works,
in or on avolume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation's users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Doc-
ument isless than one half of the entire aggregate, the Document's Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of coversif the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Trandation is considered akind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. Y ou may include a translation of this License, and all
the license natices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of adisagreement between the trand ation and the original version of this License or anotice or disclaimer,
the original version will prevail.

If asectioninthe Document isEntitled " Acknowledgements’, "Dedications’, or "History", the requirement
(section 4) to Preserveits Title (section 1) will typically require changing the actual title.

TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
fromtimeto time. Such new versionswill be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

57

GNU Free Documentation License

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify thisdocument under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Textsbeing LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend rel easing these examples
in parallel under your choice of free software license, such asthe GNU General Public License, to permit
their usein free software.

58

	Pocket Linux Guide
	Table of Contents
	Legal Information
	Copyright and License
	Disclaimer

	Introduction
	About Pocket Linux
	Prerequisite Skills
	Project Format
	Help & Support
	Feedback

	Chapter 1. Project Initiation
	A Brief History of GNU/Linux
	The Goal of Pocket Linux
	Working Within The Constraints

	Chapter 2. A Simple Prototype
	Analysis
	Design
	Simplification
	Boot Disk
	Root Disk
	CPU Compatibility

	Construction
	Prepare the boot disk media
	Build the GRUB bootloader
	Copy the bootloader files to diskette
	Finish bootloader installation
	Build the Linux kernel
	Copy the kernel to diskette
	Unmount the boot disk
	Prepare the root disk media
	Build BASH
	Copy BASH to the root disk
	Create device files that BASH needs
	Unmount the root disk

	Implementation
	System startup
	Testing what works
	Noting what does not work
	System shutdown

	Chapter 3. Saving Space
	Analysis
	Design
	Shared Libraries
	Stripped Binaries
	Compressed Root Filesystem

	Construction
	Create a ramdisk
	Rebuild the BASH shell
	Determine which libraries are required
	Copy BASH and its libraries to the ramdisk
	Create a console device
	Compress the ramdisk image
	Copy the compressed image to diskette

	Implementation
	System startup
	Verify results
	System shutdown

	Chapter 4. Some Basic Utilities
	Analysis
	Design
	Determining Required Commands
	Locating Source Code
	Leveraging FHS
	Downloading Source Code

	Construction
	Create a staging area
	Copy contents of phase 2 rootdisk
	Install binaries from GNU coreutils
	Copy additional libraries
	Strip binaries and libraries
	Create a compressed root disk image
	Write the root disk image to floppy

	Implementation
	System startup
	Testing new commands
	System shutdown

	Chapter 5. Checking and Mounting Disks
	Analysis
	Design
	Determining necessary utilities.
	Finding source code
	Automating fsck and mount
	File dependencies
	/etc/fstab
	/etc/mtab
	Device files

	Construction
	Install utilities from e2fsprogs
	Install utilities from util-linux
	Check library requirements
	Strip binaries to save space
	Create additional device files
	Create the fstab and mtab files
	Write a script to check and mount local filesystems
	Create a compressed root disk image
	Write the root disk image to floppy

	Implementation
	System startup
	Test the local_fs script
	Create and mount additional filesystems
	System shutdown

	Chapter 6. Automating Startup & Shutdown
	Analysis
	Design
	Determining necessary utilities
	Obtaining source code
	Checking dependencies
	Designing a simple GRUB configuration file.
	Outlining start-up scripts

	Construction
	Create a GRUB configuration file
	Install sysvinit utilities
	Create /etc/inittab file
	Create /etc/init.d/rc script
	Modify /etc/init.d/local_fs script
	Create a hostname script
	Create halt & reboot scripts
	Create rcN.d directories and links
	Create the root disk image
	Copy the image to diskette

	Implementation
	System Startup
	Verify success of startup scripts
	System shutdown

	Chapter 7. Enabling Multiple Users
	Analysis
	Design
	The login process
	Obtaining source code
	Creating support files
	Device nodes
	/etc/issue
	/etc/passwd
	/etc/group
	Conventions

	Dependencies
	Assigning ownership and permissions

	Construction
	Verify presence of getty and login
	Modify inittab for multi-user mode
	Create tty devices
	Create support files in /etc
	/etc/issue
	/etc/passwd
	/etc/group
	/etc/nsswitch.conf

	Copy required libraries
	Set directory and file permissions
	Create the root disk image
	Copy the image to diskette

	Implementation
	System Startup
	Add a new user to the system
	Test the new user's ability to use the system
	System shutdown

	Chapter 8. Filling in the Gaps
	Analysis
	Design
	more
	More device files
	ps, sed & ed

	Construction
	Write a "more" script
	Create additional device files
	Install ps
	Install sed
	Install ed
	Strip binaries to save space
	Ensure proper permissions
	Create the root disk image
	Copy the image to diskette

	Implementation
	System startup
	Test the "more" script
	Use ps to show running processes
	Run a simple sed script
	Test the "ed" editor
	System shutdown

	Chapter 9. Project Wrap Up
	Celebrating Accomplishments
	Planning Next Steps

	Appendix A. Hosting Applications
	Analysis
	Design
	Support for audio hardware
	Kernel support for audio
	Root disk support for audio

	Creating space for the program
	Mounting additional compressed floppies
	Root disk support for additional ramdisks

	Accessing audio files
	CD-ROM hardware support
	CD-ROM filesystem support

	Other required files
	Summary of tasks

	Construction
	Create an enhanced boot disk
	Build a new kernel
	Copy the kernel to diskette
	Unmount the boot disk

	Create an enhanced root disk
	Create additional device files
	IDE CD-ROM
	Ramdisk
	Audio

	Install the gunzip binary
	Write a startup script to mount a compressed floppy
	Create a compressed root disk

	Create a compressed /usr disk for mp3blaster
	Create a staging area
	Install the mp3blaster program
	Copy additional libraries and terminfo
	Make a compressed image and copy it to diskette

	Create a data diskette for testing

	Implementation
	System Startup
	Verify that the /usr diskette loaded properly
	Check the audio device initialization
	Test audio output
	Play a sample file
	System shutdown

	Appendix B. GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

